Abstract
We analyze univariate oscillatory integrals defined on the real line for functions from the standard Sobolev space \(H^{s} (\mathbb {R})\) and from the space \(C^{s}(\mathbb {R})\) with an arbitrary integer s ≥ 1. We find tight upper and lower bounds for the worst case error of optimal algorithms that use n function values. More specifically, we study integrals of the form
with \(k\in {\mathbb {R}}\) and a smooth density function ρ such as \( \rho (x) = \frac {1}{\sqrt {2 \pi }} \exp (-x^{2}/2)\). The optimal error bounds are \({\Theta }((n+\max (1,|k|))^{-s})\) with the factors in the Θ notation dependent only on s and ϱ.
Similar content being viewed by others
References
Blakemore, M., Evans, G.A., Hyslop, J.: Comparison of some methods for evaluating infinite range oscillatory integrals. J. Comput. Phys. 22, 352–376 (1976)
Chen, R.: On the evaluation of infinite integrals involving Bessel functions. Appl. Math. Comput. 235, 212–220 (2014)
Huybrechs, D., Olver, S.: Highly oscillatory quadrature. Chapter 2 in: Highly Oscillatory Problems, London Math. Soc. Lecture Note Ser. 366, pp. 25–50, Cambridge Univ. Press, Cambridge (2009)
Milovanović, G.V., Stanić, M.P.: Numerical integration of highly oscillating functions. In: Milovanović, G.V., Rassias, M.Th. (eds.) Analytic Number Theory, Approximation Theory, and Special Functions, pp. 613–649, Springer, New York (2014)
Novak, E., Ullrich, M., Woźniakowski, H.: Complexity of oscillatory integration for univariate Sobolev spaces. J. Complexity 31, 15–41 (2015)
Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume I: Linear Information. EMS Tracts in Mathematics, vol. 6. European Mathematical Society (EMS), Zürich (2008)
Novak, E., Zhang, S.: Optimal quadrature formulas for the Sobolev space H 1. submitted, ArXiv e-prints 1609.01146 (2016)
Rvachev, V.A.: Compactly supported solutions of functional-differential equations and their applications. Russian Math. Surveys 45, 87–120 (1990)
Sansone, G.: Orthogonal Functions, 2nd ed. John Wiley and Sons Inc, New York (1977)
Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J (1971)
Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information-Based Complexity. Academic Press, San Diego (1988)
Ullrich, M.: On “Upper Error Bounds for Quadrature Formulas on Function Classes” by K. K. Frolov. In: Cools, R., Nuyens, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods, Springer Proceedings in Mathematics & Statistics, vol. 163, pp. 571–582. Springer, Switzerland (2016)
Xu, Z., Milovanović, G.V., Xiang, S.: Efficient computation of highly oscillatory integrals with Hankel kernel. Appl. Math. Comput. 261, 312–322 (2015)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Gitta Kutyniok
Rights and permissions
About this article
Cite this article
Novak, E., Ullrich, M., Woźniakowski, H. et al. Complexity of oscillatory integrals on the real line. Adv Comput Math 43, 537–553 (2017). https://doi.org/10.1007/s10444-016-9496-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-016-9496-6