Nothing Special   »   [go: up one dir, main page]

Skip to main content

Estimates for Oscillatory Integrals with Discontinuous Amplitude

  • Chapter
  • First Online:
Extended Abstracts 2021/2022 (APDEGS 2021)

Part of the book series: Trends in Mathematics ((RPGAPC,volume 2))

Included in the following conference series:

  • 113 Accesses

Abstract

In this paper, we consider oscillatory integrals with analytic phase function and amplitude having a set of discontinuity points. We obtain estimates for such integrals that are sharp up to a positive number \(\varepsilon >0\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arkhipov, G.I., Karatsuba, A.A., Chubarikov, V.N.: Trigonometric Integrals. Izv. Akad. Nauk SSSR Ser. Mat. 5(43), 971–1003 (1979)

    MathSciNet  Google Scholar 

  2. Agarwal, R.P.: A propos d’une note de M.Pierre Humbert. C. R. Acad. Sci. Paris 236, 2031–2032 (1953)

    MathSciNet  Google Scholar 

  3. Fedoryuk, M.V.: Saddle-Point Method. Nauka, Moscow (1977) [Russian]

    Google Scholar 

  4. Karpushkin, V.N.: Uniform estimates of oscillating integrals in \(\mathbb {R}^{2}\). Dokl. Acad. Sci. USSR 1(254), 28–31 (1980) [Russian]

    Google Scholar 

  5. Randol, B.: On the Fourier transform of the indicator function of a planar set. Trans. AMS. 139, 271–278 (1969)

    MathSciNet  Google Scholar 

  6. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press (1973)

    Google Scholar 

  7. Stein, E.M.: Harmonic Analysis: Real-Valued Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press (1993)

    Google Scholar 

  8. Vinogradov, I.M.: Method Trigonometric Sums in Number Theory. Moscow, Nauka (1980) [Russian]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar R. Safarov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ikromov, I.A., Safarov, A.R., Khudoyberdiev, D.G. (2024). Estimates for Oscillatory Integrals with Discontinuous Amplitude. In: Ruzhansky, M., Van Bockstal, K. (eds) Extended Abstracts 2021/2022. APDEGS 2021. Trends in Mathematics(), vol 2. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-42539-4_14

Download citation

Publish with us

Policies and ethics