Abstract
This paper is concerned with the development of adaptive numerical methods for elliptic operator equations. We are especially interested in discretization schemes based on frames. The central objective is to derive an adaptive frame algorithm which is guaranteed to converge for a wide range of cases. As a core ingredient we use the concept of Gelfand frames which induces equivalences between smoothness norms and weighted sequence norms of frame coefficients. It turns out that this Gelfand characteristic of frames is closely related to their localization properties. We also give constructive examples of Gelfand wavelet frames on bounded domains. Finally, an application to the efficient adaptive computation of canonical dual frames is presented.
Similar content being viewed by others
References
I. Babuška and W.C. Rheinboldt, A posteriori error estimates for finite element methods, Internat. J. Numer. Math. Engrg. 12 (1978) 1597–1615.
R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comput. 44 (1985) 283–301.
A. Barinka, T. Barsch, P. Charton, A. Cohen, S. Dahlke, W. Dahmen and K. Urban, Adaptive wavelet schemes for elliptic problems: Implementation and numerical experiments, SIAM J. Sci. Comput. 23(3) (2001) 910–939.
R. Becker, C. Johnson and R. Rannacher, Adaptive error control for multigrid finite element methods, Computing 55 (1995) 271–288.
J. Bergh and J. Löfström, Interpolation Spaces (Springer-Verlag, Berlin, 1976).
F. Bornemann, B. Erdmann and R. Kornhuber, A posteriori error estimates for elliptic problems in two and three space dimensions, SIAM J. Numer. Anal. 33 (1996) 1188–1204.
L. Borup, Pseudodifferential operators on α-modulation spaces, J. Funct. Spaces Appl. 2(2) (2004) 107–123.
L. Borup and M. Nielsen, Nonlinear approximation in α-modulation spaces, Preprint (2003).
P.G. Casazza and O. Christensen, Approximation of the inverse frame operator and application to Gabor frames, J. Approx. Theory 130(2) (2000) 338–356.
O. Christensen, Finite-dimensional approximation of the inverse frame operator, J. Fourier Anal. Appl. 6(1) (2000) 79–91.
O. Christensen, An Introduction to Frames and Riesz Bases (Birkhäuser, Basel, 2003).
O. Christensen and T. Strohmer, The finite section method and problems in frame theory, Preprint (2003).
C. Chui and W. Stöckler, Nonstationary tight wavelet frames on bounded intervals, Ergebnisberichte Angewandte Mathematik 230, Universität Dortmund (2003).
A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet methods for elliptic operator equations – Convergence rates, Math. Comp. 70 (2001) 27–75.
A. Cohen, W. Dahmen and R. DeVore, Adaptive methods for nonlinear variational problems, Report 221, IGPM, RWTH Aachen (2002).
A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet methods II: Beyond the elliptic case, Found. Comput. Math. 2(3) (2002) 203–245.
E. Cordero and K. Gröchenig, Localization of frames II, Appl. Comput. Harmon. Anal. 17(1) (2004) 29–47.
S. Dahlke, W. Dahmen, R. Hochmuth and R. Schneider, Stable multiscale bases and local error estimation for elliptic problems, Appl. Numer. Math. 23 (1997) 21–48.
S. Dahlke, W. Dahmen and K. Urban, Adaptive wavelet methods for saddle point problems – Optimal convergence rates, SIAM J. Numer. Anal. 40(4) (2002) 1230–1262.
S. Dahlke, M. Fornasier and T. Raasch, Adaptive frame methods for elliptic operator equations, Bericht 2004-3, FB 12 Mathematik und Informatik, Philipps-Universität Marburg (2004).
S. Dahlke, R. Hochmuth and K. Urban, Adaptive wavelet methods for saddle point problems, M2AN Math. Model. Numer. Anal. 34 (2000) 1003–1022.
S. Dahlke, G. Steidl and G. Teschke, Weighted coorbit spaces and Banach frames on homogeneous spaces, J. Fourier Anal. Appl. 10(5) (2004) 507–539.
W. Dahmen, Wavelet and multiscale methods for operator equations, Acta Numerica 6 (1997) 55–228.
W. Dahmen and A. Kunoth, Multilevel preconditioning, Numer. Math. 63(3) (1992) 315–344.
W. Dahmen, A. Kunoth and K. Urban, Biorthogonal spline–wavelets on the interval – Stability and moment conditions, Appl. Comput. Harmon. Anal. 6 (1999) 132–196.
W. Dahmen, S. Prössdorf and R. Schneider, Multiscale methods for pseudodifferential operators on smooth manifolds in: Proc. of the Internat. Conf. on Wavelets: Theory, Algorithms and Applications, eds. C.K. Chui, L. Montefusco and L. Puccio (Academic Press, New York, 1994) pp. 385–424.
W. Dahmen and R. Schneider, Wavelets with complementary boundary conditions – Function spaces on the cube, Result. Math. 34(3/4) (1998) 255–293.
W. Dahmen and R. Schneider, Composite wavelet bases for operator equations, Math. Comp. 68 (1999) 1533–1567.
W. Dahmen and R. Schneider, Wavelets on manifolds I. Construction and domain decomposition, SIAM J. Math. Anal. 31 (1999) 184–230.
W. Dahmen, J. Vorloeper and K. Urban, Adaptive wavelet methods – basic concepts and applications to the Stokes problem, in: Proc. of the Internat. Conf. of Computational Harmonic Analysis, ed. D.-X. Zhou (World Scientific, Singapore, 2002) pp. 39–80.
I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, PA, 1992).
R. DeVore, Nonlinear approximation, Acta Numerica 7 (1998) 51–150.
R. DeVore and I. Daubechies, Reconstruction of bandlimited function from very coarsely quantized data: A family of stable sigma–delta modulators of arbitrary order, Ann. of Math. 158(2) (2003) 679–710.
W. Dörfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal. 33 (1996) 737–785.
H.G. Feichtinger and M. Fornasier, Flexible Gabor-wavelet atomic decompositions for L 2-Sobolev spaces, Ann. Mat. Pura Appl. (2004) to appear.
H.G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions I, J. Funct. Anal. 86(2) (1989) 307–340.
H.G. Feichtinger and K. Gröchenig, Iterative reconstruction of multivariate band-limited functions from irregular sampling values, SIAM J. Math. Anal. 23(1) (1992) 244–261.
H.G. Feichtinger and T. Strohmer, eds., Gabor Analysis and Algorithms (Birkhäuser, Basel, 1998).
H.G. Feichtinger and T. Strohmer, eds., Advances in Gabor Analysis (Birkhäuser, Basel, 2003).
M. Fornasier, Banach frames for alpha-modulation spaces, arXiv:math.FA/0410549.
M. Fornasier, Constructive methods for numerical applications in signal processing and homogenization problems, Ph.D. thesis, University of Padova and University of Vienna (2002).
M. Fornasier, Quasi-orthogonal decompositions of structured frames, J. Math. Anal. Appl. 289(1) (2004) 180–199.
M. Fornasier and K. Gröchenig, Intrinsic localization of frames, Constr. Approx. (2005) to appear.
M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Fourier Anal. Appl. 93(1) (1990) 34–170.
K. Gröchenig, Describing functions: atomic decompositions versus frames, Monatsh. Math. 112(1) (1991) 1–42.
K. Gröchenig, Foundations of Time–Frequency Analysis (Birkhäuser, Basel, 2000).
K. Gröchenig, Localization of frames, in: GROUP 24: Physical and Mathematical Aspects of Symmetries (Bristol), eds. J.-P. Gazeau, R. Kerner, J.-P. Antoine, S. Metens and J.-Y. Thibon (IOP Publishing, 2003) to appear.
K. Gröchenig, Localization of frames, Banach frames, and the invertibility of the frame operator, J. Fourier Anal. Appl. 10(2) (2004) 105–132.
K. Gröchenig and M. Leinert, Symmetry of matrix algebras and symbolic calculus for infinite matrices, Preprint (2003).
W. Hackbusch, Elliptic Differential Equations (Springer, Berlin, 1992).
R.B. Lehoucq and D.C. Sorensen, Deflation techniques for an implicitly restarted Arnoldi iteration, SIAM J. Matrix Anal. Appl. 17(4) (1996) 789–821.
P.G. Lemarié, Bases d'ondelettes sur les groupes de lie stratifiés, Bull. Soc. Math. France 117(2) (1989) 213–232.
M. Mommer, Fictitious domain Lagrange multiplier approach: Smoothness analysis, Report 230, IGPM, RWTH Aachen (2003).
R. Stevenson, Adaptive solution of operator equations using wavelet frames, SIAM J. Numer. Anal. 41(3) (2003) 1074–1100.
R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques, J. Comput. Appl. Math. 50 (1994) 67–83.
M. Werner, Adaptive Frame-Verfahren für elliptische Randwertprobleme, Master thesis, Fachbereich Mathematik und Informatik, Philipps-Universität Marburg (2005) in preparation.
A. Zaanen, Integration (North-Holland, Amsterdam, 1967).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Y. Xu
Mathematics subject classifications (2000)
41A25, 41A46, 42C15, 42C40, 46E35, 65F10, 65F20, 65F50, 65N12, 65N55, 65T60
The authors acknowledge the financial support provided through the European Union's Human Potential Programme, under contract HPRN-CT-2002-00285 (HASSIP). The work of the first author was also supported through DFG, Grants Da 360/4-1, Da 360/4-2. The second author also wants to thank the AG Numerik/Wavelet-Analysis Group, Philipps-Universität Marburg, and the ZeTeM, Universität Bremen, Germany, for the hospitality and the stimulating cooperations during the preparation of this work. Currently he is a Postdoc visitor (Individual Marie Curie Fellow, contract MEIF-CT-2004-501018) at Universität Wien, Fakultät für Mathematik, NuHAG, Nordbergstraß e 15, A-1090 Wien, Austria.
Rights and permissions
About this article
Cite this article
Dahlke, S., Fornasier, M. & Raasch, T. Adaptive frame methods for elliptic operator equations. Adv Comput Math 27, 27–63 (2007). https://doi.org/10.1007/s10444-005-7501-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-005-7501-6
Keywords
- operator equations
- multiscale methods
- adaptive algorithms
- domain decomposition
- sparse matrices
- overdetermined systems
- Banach frames
- norm equivalences
- Banach spaces