Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Describing functions: Atomic decompositions versus frames

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

The theory of frames and non-orthogonal series expansions with respect to coherent states is extended to a general class of spaces, the so-called coorbit spaces. Special cases include wavelet expansions for the Besov-Triebel-Lizorkin spaces, Gabortype expansions for modulation spaces, and sampling theorems for wavelet and Gabor transforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [B]Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Part I. Comm. Pure Appl. Math.14, 187–214 (1961).

    Google Scholar 

  • [BA1]Bastiaans, M. J.: Signal description by means of local frequency spectrum. SPIE373, 49–62 (1981).

    Google Scholar 

  • [BA]Battle, G.: Heisenberg proof of the Balian-Low theorem. Lett. Math. Phys.15, 175–177 (1988).

    Google Scholar 

  • [BO]Bohnké, G.: Treillis d'ondellettes associés aux groupes de Lorentz. (Preprint.)

  • [CMS]Coifman, R., Meyer, Y., Stein, E.: Some new function spaces and their applications to harmonic analysis. J. Funct. Anal.62, 304–335 (1985).

    Google Scholar 

  • [CR]Coifman, R. Rochberg, R.: Representation theorems for holomorphic and harmonic functions. Astérisque77, 11–65 (1980).

    Google Scholar 

  • [D1]Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory36, 961–1005 (1990).

    Google Scholar 

  • [D2]Daubechies, I.: Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math.41, 909–996 (1988).

    Google Scholar 

  • [DG]Daubechies, I., Grossmann, A.: Frames in the Bargmann space of entire functions. Comm. Pure Appl. Math.16, 151–169 (1988).

    Google Scholar 

  • [DGM]Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys.27, 1271–1283 (1986).

    Google Scholar 

  • [DS]Duffin, R., Schaeffer, A.: A class of nonharmonic Fourier series Trans. Amer. Math. Soc.72, 341–366 (1952).

    Google Scholar 

  • [DM]Duflo, M., Moore, C.C.: On the regular representation of a non-unimodular locally compact group. J. Funct. Anal.21, 209–243 (1976).

    Google Scholar 

  • [F1]Feichtinger, H. G.: Banach convolution algebras of Wiener's type. In: Functions, Series, Operators. 509–524. Proc. Conf., Budapest 1980. Amsterdam: North Holland. 1983.

    Google Scholar 

  • [F2]Feichtinger, H. G.: Atomic characterizations of modulation spaces through Gabor type representations. Rocky Mountain J. Math.19, 113–126 (1989).

    Google Scholar 

  • [F3]Feichtinger, H. G.: Modulation spaces on locally compact abelian groups. Techn. Report. University of Vienna, 1983.

  • [FG1]Feichtinger, H. G., Gröchenig, K.: A unified approach to atomic decompositions via integrable group representations. In: Proc. Conf. “Functions Spaces and Applications”. (M. Cwikel et al. eds.) pp. 52–73. Lect. Notes Math. 1302, Berlin-Heidelberg-New York: Springer. 1988.

    Google Scholar 

  • [FG2]Feichtinger, H. G., Gröchenig, K.: Banach Spaces related to integrable group representations and their atomic decompositions I. J. Funct. Anal.86, 307–340 (1989).

    Google Scholar 

  • [FG3]Feichtinger, H. G., Gröchenig, K.: Banach Spaces related to integrable group representations and their atomic decompositions II. Mh. Math.108, 129–148 (1989).

    Google Scholar 

  • [FJ1]Frazier, M., Jawerth, B.: Decompositon of Besov spaces. Indiana Univ. Math. J.34, 777–799 (1985).

    Google Scholar 

  • [FJ2]Frazier, M., Jawerth, B.: The φ-transform and decompositions of distribution spaces. In: Proc. Conf. “Functions Spaces and Applications” (Cwikel, M., et al., eds.) Lect. Notes Math. 1302. Berlin-Heidelberg-New York: Springer. 1988.

    Google Scholar 

  • [FJ3]Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal.93, 34–170 (1990).

    Google Scholar 

  • [FS]Folland, G., Stein, E.: Hardy Spaces on Homogeneous Groups. Princeton: Univ. Press. 1982.

    Google Scholar 

  • [G1]Gröchenig, K.: Analyses multi-échelles et bases d'ondelettes. C. R. Acad. Sci. Paris305, 13–15 (1987).

    Google Scholar 

  • [G2]Gröchenig, K.: Unconditional bases in translation and dilation invariant function spaces on ℝn. In: Constructive Theory of Functions. Proc. Conf. Varna 1987 (Sendov, B. et al., eds.), pp. 174–183. Bulgarian Acad. Sci. 1988.

  • [GMP]Grossmann, A., Morlet, J., Paul, T.: Transforms associated to square integrable group representations I. J. Math. Phys.26, 2473–2479 (1985).

    Google Scholar 

  • [HW]Heil, C. E., Walnut, D. F.: Continuous and discrete wavelet transforms. SIAM Review31, 628–666 (1989).

    Google Scholar 

  • [JPR]Janson, S., Peetre, J., Rochberg, R.: Hankel forms and the Fock space. Revista Math. Iberoam.3, 61–138 (1987).

    Google Scholar 

  • [KS]Klauder, J. R., Skagerstam, B. S.: Coherent States. Singapore: World Scientific. 1985.

    Google Scholar 

  • [LM]Lemarie, P. G., Meyer, Y.: Ondelettes et bases hilbertiennes. Revista Math. Iberoam.2, 1–18 (1986).

    Google Scholar 

  • [L]Luecking, D.: Representation and duality in weighted spaces of analytic functions. Indiana Univ. Math. J.34, 319–336 (1985).

    Google Scholar 

  • [M]Meyer, Y. Ondelettes, Vol.I. Paris: Hermann. 1990.

    Google Scholar 

  • [MA]Mallat, S.: Multiresolution approximation and wavelet bases ofL 2. Trans. Amer. Math. Soc.315, 69–87 (1989).

    Google Scholar 

  • [RT]Ricci, F., Taibleson, M.: Boundary values of harmonic functions in mixed norm spaces and their atomic structure. Ann. Scuola Norm. Sup. Pisa, Ser. IV,10, 1–54 (1983).

    Google Scholar 

  • [R]Rochberg, R.: Decomposition theorems for Bergman spaces and their applications. In: Operators and Function Theory. (Powers, S. C., ed.) Reidel. 1985.

  • [SV]Sharpley, R., De Vore, R.: Maximal Functions Measuring Smoothness. Memoirs Amer. Math. Soc.293, (1984).

  • [S]Stettinger, F.: Banachräume von Funktionen und Oszillation. Ph.D. Thesis. Univ. of Vienna. 1983.

  • [T]Triebel, H.: Characterizations of Besov-Hardy-Sobolev-spaces: A unified approach. J. Approx. Theory52, 162–203 (1988).

    Google Scholar 

  • [T2]Triebel, H.: Theory of function Spaces. Leipzig: Akad. Verlagsges. 1983.

    Google Scholar 

  • [Y]Young, R. M.: An Introduction to Nonharmonic Fourier Series. New York: Academic Press. 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gröchenig, K. Describing functions: Atomic decompositions versus frames. Monatshefte für Mathematik 112, 1–42 (1991). https://doi.org/10.1007/BF01321715

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01321715

Keywords

Navigation