Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Quality evaluation methods of handwritten Chinese characters: a comprehensive survey

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Quality evaluation of handwritten Chinese characters aims to automatically quantify and assess handwritten Chinese characters through computer vision and machine learning technology. It is a topic of great concern for many handwriting learners and calligraphy enthusiasts. Over the past years, with the continuous development of computer technology, various new techniques have achieved flourishing and thriving progress. Nevertheless, how to realize fast and accurate character evaluation without human intervention is still one of the most challenging tasks in artificial intelligence. In this paper, we aim to provide a comprehensive survey of the existing handwritten Chinese character quality evaluation methods. Specifically, we first illustrate the research scope and background of the task. Then we outline our literature selection and analysis methodology, and review a series of related concepts, including common Chinese character features, evaluation metrics and classical machine learning models. After that, relying on the adopted mechanism and algorithm, we categorize the evaluation methods into two major groups: traditional methods and machine-learning-based methods. Representative approaches in each group are summarized, and their strengths and limitations are discussed in detail. Based on 191 papers in this survey, we finally conclude our paper with the challenges and future directions, with the expectation to provide some valuable illuminations for researchers in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Research data policy and data availability statements

Not applicable.

Notes

  1. https://www.foundertype.com/.

  2. https://hanyi.com.cn/.

  3. https://image-net.org/challenges/LSVRC/2014/results.

References

  1. Li, Y.F.: Characteristics of Chinese characters and Chinese character teaching. Chin. Teach. World 28(3), 356–367 (2014). https://doi.org/10.13724/j.cnki.ctiw.2014.03.006

    Article  Google Scholar 

  2. Fei, J.H.: The evolution of the form and carrier of Chinese characters and the historical and cultural inheritance. Sinogr. Cult. 335(11), 93–95 (2023). https://doi.org/10.14014/j.cnki.cn11-2597/g2.2023.11.018

    Article  Google Scholar 

  3. Chen, H.: An analysis of the historical origin, development and cultural inheritance of Chinese characters. Sinogr. Cult. 314(16), 1–3 (2022). https://doi.org/10.14014/j.cnki.cn11-2597/g2.2022.16.003

    Article  Google Scholar 

  4. Kong, R., Zhong, W.: Chinese painting techniques created by Chinese characters. J. Gannan Norm. Univ. 1, 102–105 (2007). https://doi.org/10.13698/j.cnki.cn36-1037/c.2007.01.026

    Article  Google Scholar 

  5. Liang, G.: Chinese characters and Chinese literature. J. Qiannan Normal Coll. Natl. 2, 1–8 (2006). https://doi.org/10.3969/j.issn.1674-2389.2006.02.001

    Article  Google Scholar 

  6. Yan, J.B., Fang, Y.M., Liu, X.L.: The review of distortion-related image quality assessment. J. Image Gr. 27(5), 1430–1466 (2022). https://doi.org/10.11834/jig.210790

    Article  Google Scholar 

  7. Cao, Y.D., Liu, H.Y., Jia, X., Li, X.H.: Overview of image quality assessment method based on deep learning. Comput. Eng. Appl. 57(23), 27–36 (2021). https://doi.org/10.3778/i.issn.1002-8331.2106-0228

    Article  Google Scholar 

  8. Lu, X., Lin, Z., Shen, X., Mech, R., Wang, J.Z.: Deep multi-patch aggregation network for image style, aesthetics, and quality estimation. Paper presented at 2015 IEEE International Conference on Computer Vision, ICCV, antiago, Chile, December 7–13 (2015). https://doi.org/10.1109/ICCV.2015.119

  9. Aydin, T.O., Smolic, A., Gross, M.H.: Automated aesthetic analysis of photographic images. IEEE Trans. Vis. Comput. Gr. 21(1), 31–42 (2015). https://doi.org/10.1109/TVCG.2014.2325047

    Article  Google Scholar 

  10. Marchesotti, L., Murray, N., Perronnin, F.: Discovering beautiful attributes for aesthetic image analysis. Int. J. Comput. Vis. 113(3), 246–266 (2015). https://doi.org/10.1007/s11263-014-0789-2

    Article  Google Scholar 

  11. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind’’ image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013). https://doi.org/10.1109/LSP.2012.2227726

    Article  Google Scholar 

  12. Esfandarani, H.T., Milanfar, P.: NIMA: neural image assessment. IEEE Trans. Image Process. 27(8), 3998–4011 (2018). https://doi.org/10.1109/TIP.2018.2831899

    Article  MathSciNet  Google Scholar 

  13. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. Paper presented at IEEE Conference on Computer Vision and Pattern Recognition CVPR, Salt Lake City, UT, USA, June 18–22 (2018). https://doi.org/10.1109/CVPR.2018.00068

  14. Bovik, A.C.: Automatic prediction of perceptual image and video quality. Proc. IEEE 101(9), 2008–2024 (2013). https://doi.org/10.1109/JPROC.2013.2257632

    Article  Google Scholar 

  15. Chen, B., Zhu, L., Li, G., Lu, F., Fan, H., Wang, S.: Learning generalized spatial-temporal deep feature representation for no-reference video quality assessment. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1903–1916 (2022). https://doi.org/10.1109/TCSVT.2021.3088505

    Article  Google Scholar 

  16. Wu, H., Zhang, E., Liao, L., Chen, C., Hou, J., Wang, A., Sun, W., Yan, Q., Lin, W.: Exploring video quality assessment on user generated contents from aesthetic and technical perspectives. Paper presented at the IEEE/CVF International Conference on Computer Vision, ICCV, Paris, France, October 1–6 (2023). https://doi.org/10.1109/ICCV51070.2023.01843

  17. Xiao, X., Li, C.C.: Research progress on evaluation methods of handwritten Chinese characters. Comput. Eng. Appl. 58(2), 27–42 (2022). https://doi.org/10.3778/j.issn.1002-8331.2107-0207

    Article  Google Scholar 

  18. Jiang, J., Xu, H., Fan, S.Q., Qian, X.F., Li, Y.: Research on validity of intelligent assessment of handwriting integrity of hard-pen Chinese characters based on feature markers. e-Educ. Res. 37(6), 84–89 (2016). https://doi.org/10.13811/j.cnki.eer.2016.06.012

    Article  Google Scholar 

  19. Tolosana, R., Delgado-Santos, P., Pérez-Uribe, A., Vera-Rodríguez, R., Fiérrez, J., Morales, A.: DeepWriteSYN: on-line handwriting synthesis via deep short-term representations. Paper presented at the Thirty-Fifth AAAI Conference on Artificial Intelligence, Virtual Event, February 2–9 (2021). https://doi.org/10.1609/AAAI.V35I1.16139

  20. Du, P., Liu, Y., Xun, E.: The techniques and evaluation method for beautification of handwriting Chinese characters based on cubic Bézier curve and convolutional neural network. Paper presented at the 14th International Conference on Computer Science & Education ICCSE, Toronto, ON, Canada, August 19–21 (2019). https://doi.org/10.1109/ICCSE.2019.8845418

  21. An, W.H.: A survey on computer-aided teaching technology of Chinese character writing. Comput. Eng. Appl. 55(23), 1–6 (2019). https://doi.org/10.3778/j.issn.1002-8331.1908-0195

    Article  Google Scholar 

  22. Shen, L., Chen, B., Wei, J., Xu, H., Tang, S.-K., Mirri, S.: The challenges of recognizing offline handwritten Chinese: a technical review. Appl. Sci. (2023). https://doi.org/10.3390/app13063500

    Article  Google Scholar 

  23. Yu, M.-M., Zhang, H., Yin, F., Liu, C.-L.: An approach for handwritten chinese text recognition unifying character segmentation and recognition. Pattern Recogn. (2024). https://doi.org/10.1016/j.patcog.2024.110373

    Article  Google Scholar 

  24. Khan, T., Sarkar, R., Mollah, A.F.: Deep learning approaches to scene text detection: a comprehensive review. Artif. Intell. Rev. (2021). https://doi.org/10.1007/S10462-020-09930-6

    Article  Google Scholar 

  25. Xu, Y., Zhang, X.-Y., Zhang, Z., Liu, C.-L.: Large-scale continual learning for ancient Chinese character recognition. Pattern Recogn. (2024). https://doi.org/10.1016/j.patcog.2024.110283

    Article  Google Scholar 

  26. Yu, D., Lv, X.C., Xun, E.D.: Soft pen calligraphy beautification for handwriting characters based on stroke feature triangle. Comput. Sci. 40(2), 308–311 (2013). https://doi.org/10.3969/j.issn.1002-137X.2013.02.069

    Article  Google Scholar 

  27. Huang, F.: Research on Quality Evaluation Method of Hard-pen Chinese Character Writing Based on Template Matching. Nanjing Normal University, Nanjing (2015)

    Google Scholar 

  28. Ge, J.M.: Aesthetic Evaluation of Robotic Brush Characters Based on Possibility Probability Distribution. Xiamen University, Xiamen (2016)

    Google Scholar 

  29. Shao, R.T.: Machine Learning-based Calligraphy Character Recognition and Intelligent Judgment. Hubei University of Technology, Hubei (2020). https://doi.org/10.27131/d.cnki.ghugc.2020.000449

  30. Tang, W.W.W., Leong, H.V., Ngai, G., Chan, S.C.F.: Detecting handwriting errors with visual feedback in early childhood for Chinese characters. Paper presented at 2014 Conference on Interaction Design and Children, Aarhus, Denmark, June 17–20 (2014). https://doi.org/10.1145/2593968.2610470

  31. Han, R.F., An, W.H., Xun, E.D., Li, Q.: Real-time grading judgement for stroke quality in Chinese character handwriting. J. Comput. Appl. 36(S1), 281–285 (2016)

    Google Scholar 

  32. Lam, H., Ki, W., Law, N., Chung, A.L., Ko, P., Ho, A.H.S., Pun, S.W.: Designing CALL for learning Chinese characters. J. Comput. Assist. Learn. 17(1), 115–128 (2001). https://doi.org/10.1111/j.1365-2729.2001.00164.x

    Article  Google Scholar 

  33. Tam, V.W.L., Huang, C.: An Extendible software for learning to write chinese characters in correct stroke sequences on smartphones. Paper presented at the 11th IEEE International Conference on Advanced Learning Technologies ICALT, Athens, Georgia, USA, July 6–8 (2011). https://doi.org/10.1109/ICALT.2011.40

  34. Zhao, X.W., Lv, S.R.: Design of writing practice system about order strokes of primary Chinese characters. J. Inner Mongolia Agric. Univ. 31(1), 236–240 (2010)

    Google Scholar 

  35. Chen, S.S.: Design and application of writing system based on xy teaching platform. Electron Technol. 51(9), 284–285 (2022)

    Google Scholar 

  36. Hu, Z., Xu, Y., Huang, L., Leung, H.: A Chinese handwriting education system with automatic error detection. J. Softw. 4(2), 101–107 (2009). https://doi.org/10.4304/jsw.4.2.101-107

    Article  Google Scholar 

  37. Tam, V.W.L.: An intelligent e-learning software for learning to write correct Chinese characters on mobile devices. Interact. Technol. Smart Educ. 9(4), 191–203 (2012). https://doi.org/10.1108/17415651211283995

    Article  MathSciNet  Google Scholar 

  38. Tang, K., Li, K., Leung, H.: A web-based Chinese handwriting education system with automatic feedback and analysis. Paper presented at the 5th International Conference of Advances in Web Based Learning ICWL, Penang, Malaysia, July 19–21 (2006). https://doi.org/10.1007/11925293_17

  39. Sun, X.J., Zhang, X.W.: The evolution and development trend of computer aided teaching technology of foreign Chinese character writing. TCSOL Stud. 87(3), 68–76 (2022). https://doi.org/10.16131/j.cnki.cn44-1669/g4.2022.03.009

    Article  Google Scholar 

  40. Wang, Q., Zhao, R.C., Feng, D.G.: Methodologies and evaluation of normalization for handwritten Chinese characters. J. Data Acquisit. Process. 2, 227–232 (2001). https://doi.org/10.16337/j.1004-9037.2001.02.019

    Article  Google Scholar 

  41. Wu, C.Z.: Research and Implementation of Evaluation System of Chinese Calligraphy Copy. South China University of Technology, Guangzhou (2017)

    Google Scholar 

  42. Bengio, Y., Courville, A.C., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013). https://doi.org/10.1109/TPAMI.2013.50

    Article  Google Scholar 

  43. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015). https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  44. Zhang, J.Y., Wang, H.L., Guo, Y., Xiao, H.: Review of deep learning. Appl. Res. Comput. 35(7), 1921–1928 (2018). https://doi.org/10.3969/j.issn.1001-3695.2018.07.001

    Article  Google Scholar 

  45. Lu, M.L.: Development and application of deep learning technology. Electron. Technol. 52(5), 322–324 (2023)

    Google Scholar 

  46. Zhou, F.Y., Jin, L.P., Dong, J.: Review of convolutional neural network. Chin. J. Comput. 40(6), 1229–1251 (2017). https://doi.org/10.11897/SP.J.1016.2017.01229

    Article  MathSciNet  Google Scholar 

  47. Gu, X., Zhang, H., Kim, S.: Deep code search. Paper presented at the 40th International Conference on Software Engineering, ICSE, Gothenburg, Sweden, May 27–June 03 (2018). https://doi.org/10.1145/3180155.3180167

  48. Pautasso, M.: Ten simple rules for writing a literature review. PLoS Comput. Biol. (2013). https://doi.org/10.1371/JOURNAL.PCBI.1003149

    Article  Google Scholar 

  49. Jin, Y.J., Jiang, X., Ming, G.H.: Comparative study of several feature extraction methods for handwritten Chinese characters. Nei Jiang Ke Ji 30(10), 12–13 (2009). https://doi.org/10.3969/j.issn.1006-1436.2009.10.012

    Article  Google Scholar 

  50. He, Z.G., Cao, Y.D.: A review of off-line handwritten Chinese character recognition. Comput. Eng. 34(15), 201–204 (2008). https://doi.org/10.3969/j.issn.1000-3428.2008.15.073

    Article  Google Scholar 

  51. Liu, H.S.: Several statistic characteristics of chinese character pattern and structure. J. East China Univ. Metall. 17(2), 149–151 (2000). https://doi.org/10.3969/j.issn.1671-7872.2000.02.014

    Article  Google Scholar 

  52. Pan, X., Ye, X.Z., Zhang, S.Y.: The car plate Chinese character feature extraction based on wavelet. J. Image Gr. 8(10), 1218–1222 (2003). https://doi.org/10.3969/j.issn.1006-8961.2003.10.020

    Article  Google Scholar 

  53. Wan, M.: Character feature extraction and recognition based on angular point. J. Yibin Univ. 10(6), 50–51 (2010). https://doi.org/10.3969/j.issn.1671-5365.2010.06.019

    Article  Google Scholar 

  54. Luan, S., Chen, C., Zhang, B., Han, J., Liu, J.: Gabor convolutional networks. IEEE Trans. Image Process. 27(9), 4357–4366 (2018). https://doi.org/10.1109/TIP.2018.2835143

    Article  MathSciNet  Google Scholar 

  55. Jin, L.W., Qin, J.Z.: Study on Gabor filter-based handwritten Chinese character feature extraction. Appl. Res. Comput. 12, 163–165 (2004). https://doi.org/10.3969/j.issn.1001-3695.2004.12.056

    Article  Google Scholar 

  56. Zhang, Z., Jin, L., Ding, K., Gao, X.: Character-SIFT: A novel feature for offline handwritten chinese character recognition. Paper presented at the 10th International Conference on Document Analysis and Recognition ICDAR, Barcelona, Spain, July 26–29 (2009). https://doi.org/10.1109/ICDAR.2009.27

  57. Jin, Z., Yue, K., Chen, K.: Ssift: an improved sift descriptor for Chinese character recognition in complex images. Inf. Secur. Commun. Priv. 194(2), 62–64 (2003). https://doi.org/10.3969/j.issn.1009-8054.2010.02.030

    Article  Google Scholar 

  58. Wang, J., Jiang, M.M., Hua, X.H., Lu, S.Y., Li, J.P.: Binocular object tracking method using projection histogram matching. CAAI Trans. Intell. Syst. 10(5), 775–782 (2015). https://doi.org/10.11992/tis.201410009

    Article  Google Scholar 

  59. Huang, X.-L., Wang, P.-P., Li, Y.-B., Yang, L.-F.: Character retrieval method based on directional line element feature and stroke density feature. Comput. Sci. 34(12) (2007)

  60. Li, H.-R., Yang, F., Zuo, L.-N., Tian, X.-D.: An applied coarse classification scheme and analysis. Paper presented at 2008 International Conference on Machine Learning and Cybernetics (ICMLC), Kunming, China, July 12–15 (2008). https://doi.org/10.1109/ICMLC.2008.4620686

  61. Liu, W., Bo, N., He, H.Z., Li, D.X., Sun, F.J.: A feature extracting method for handwritten Chinese character recognition based on elastic mesh and fuzzy feature block. J. Chin. Inf. Process. 21(3), 117–121 (2007). https://doi.org/10.3969/j.issn.1003-0077.2007.03.018

    Article  Google Scholar 

  62. Chen, Z.H., Huang, X.H., Chen, P.F., Li, W.L., Zhu, S.Y.: Handwritten Chinese character recognition based on double elastic mesh. J. Comput. Appl. 29(2), 395–397 (2009)

    Google Scholar 

  63. Guo, W., Guo, X.D.: Study of handwritten Chinese characters’ double elastic mesh and fuzzy feature. Control Eng. China 19(6), 1025–1028 (2012). https://doi.org/10.14107/j.cnki.kzgc.2012.06.025

    Article  Google Scholar 

  64. Ran, G., Huang, S., He, Z.H., Yang, J.: Standardized elastic dual-mesh Chinese character feature extraction based on overlap and fuzzy technology. Comput. Eng. Des. 37(1), 211–215 (2016). https://doi.org/10.16208/j.issn1000-7024.2016.01.040

    Article  Google Scholar 

  65. Luo, M., Zhang, Y.X.: Watermarking Chinese text document based on structure and semantics of Chinese characters. Comput. Knowl. Technol. 7(4), 8902–8904 (2011). https://doi.org/10.3969/j.issn.1009-3044.2011.34.055

    Article  Google Scholar 

  66. Ma, S.P., Xia, Y., Zhu, X.Y.: Hierarchical contour feature of Chinese characters and its application. J. Tsinghua Univ. (Science and Technology) 35(5), 79–83 (1995). https://doi.org/10.16511/j.cnki.qhdxxb.1995.05.014

    Article  Google Scholar 

  67. Tao, Y., Tang, Y.Y.: The feature extraction of chinese character based on contour information. Paper presented at the Fifth International Conference on Document Analysis and Recognition ICDAR, Bangalore, India, September 20–22 (1999). https://doi.org/10.1109/ICDAR.1999.791868

  68. Kim, I., Kim, J.H.: Statistical character structure modeling and its application to handwritten Chinese character recognition. IEEE Trans. Pattern Anal. Mach. Intell. 25(11), 1422–1436 (2003). https://doi.org/10.1109/TPAMI.2003.1240117

    Article  Google Scholar 

  69. Liu, Y.B., Sun, Y.N., Xun, E.D.: Chinese calligraphy alignment based on 3d point set registration. Acta Sci. Nat. Univ. Pekinen. 52(1), 81–88 (2016). https://doi.org/10.13209/j.0479-8023.2016.016

    Article  MathSciNet  Google Scholar 

  70. Bulacu, M., Schomaker, L.: Text-independent writer identification and verification using textural and allographic features. IEEE Trans. Pattern Anal. Mach. Intell. (2007). https://doi.org/10.1109/TPAMI.2007.1009

    Article  Google Scholar 

  71. Cheng, L., Wang, J., Li, B., Tian, W., Zhu, Z., Wei, H., Liu, S.: Algorithm on strokes separation for Chinese characters based on edge. Comput. Sci. (2013). https://doi.org/10.3969/j.issn.1002-137X.2013.07.069

    Article  Google Scholar 

  72. Tang, W., Su, Y., Li, X., Zha, D., Jiang, W., Gao, N., Xiang, J.: CNN-based chinese character recognition with skeleton feature. Paper presented at the 25th International Conference of Neural Information Processing ICONIP, Siem Reap, Cambodia, December 13–16 (2008). https://doi.org/10.1007/978-3-030-04221-9_41

  73. Zhang, X.F., Liu, J.Y.: Extracting Chinese calligraphy strokes using stroke crawler. J. Comput.-Aid. Des. Comput. Gr. 28(2), 301–309 (2016). https://doi.org/10.3969/j.issn.1003-9775.2016.02.013

    Article  Google Scholar 

  74. Zhu, X.W., Yang, C.Q.: Graph based stroke extraction for Chinese calligraphy. Softw. Guide 18(4), 184–187 (2019). https://doi.org/10.11907/rjdk.191165

    Article  Google Scholar 

  75. Cao, Z.S., Su, Z.W., Wang, Y.Z., Xiong, P.: A method for handwritten Chinese stroke extraction based on ambiguous-zone detection. J. Image Gr. 14(11), 2341–2348 (2009). https://doi.org/10.11834/jig.20091124

    Article  Google Scholar 

  76. Miao, J.: Acquisition of structural features of Chinese calligraphy by skeletionizing and skeleton - dividing. J. Kunming Univ. Sci. Technol. 33(3) (2008). https://doi.org/10.3969/j.issn.1007-855X.2008.03.012

  77. Liu, X., Jia, Y., Tan, M.: Geometrical-statistical modeling of character structures for natural stroke extraction and matching. Paper presented at the 10th International Workshop on Frontiers in Handwriting Recognition, La Baule, France, Oct. 23–26 (2006)

  78. Li, Q., Xiong, J., Wu, Q., Yang, Y.: Study of feature weighted-based generation method for dian strokes of Chinese character. Acta Sci. Nat. Univ. Pekinen. (2014). https://doi.org/10.13209/j.0479-8023.2014.017

    Article  Google Scholar 

  79. An, W.: Quality evaluation and key defects correction for handwritten Chinese characters. Paper presented at the 6th International Conference on Systems and Informatics ICSAI, Shanghai, China, November 2–4 (2019). https://doi.org/10.1109/ICSAI48974.2019.9010226

  80. Chu, J., Chen, X.Y.Q.: Review on full reference image quality assessment algorithms. Appl. Res. Comput. (2014). https://doi.org/10.3969/j.issn.1001-3695.2014.01.003

    Article  Google Scholar 

  81. Avcibas, I., Sankur, B., Sayood, K.: Statistical evaluation of image quality measures. J. Electron. Imaging 14(2), 206–223 (2002). https://doi.org/10.1117/1.1455011

    Article  Google Scholar 

  82. Pang, Q., Wang, Z.H., Geng, L.S., Fan, Y.L.: A criterion of objectively assessing image quality based on fractal dimension. J. Image Gr. 14(4), 657–662 (2009). https://doi.org/10.11834/jig.20090414

    Article  Google Scholar 

  83. Pang, J.X., Zhang, R., Zhang, H., Liu, Z.K.: Quality assessment for image coding with structural distortion. J. Image Gr. 14(8), 1560–1568 (2009). https://doi.org/10.11834/jig.20090815

    Article  Google Scholar 

  84. Chandler, D.M., Hemami, S.S.: VSNR: a wavelet-based visual signal-to-noise ratio for natural images. IEEE Trans. Image Process. 16(9), 2284–2298 (2007). https://doi.org/10.1109/TIP.2007.901820

    Article  MathSciNet  Google Scholar 

  85. Damera-Venkata, N., Kite, T.D., Geisler, W.S., Evans, B.L., Bovik, A.C.: Image quality assessment based on a degradation model. IEEE Trans. Image Process. 9(4), 636–650 (2000). https://doi.org/10.1109/83.841940

    Article  Google Scholar 

  86. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  87. Chen, G., Yang, C., Xie, S.: Gradient-based structural similarity for image quality assessment. Paper presented at the International Conference on Image Processing ICIP, Atlanta, Georgia, USA, October 8–11 (2006). https://doi.org/10.1109/ICIP.2006.313132

  88. Wang, Z., Li, Q.: Information content weighting for perceptual image quality assessment. IEEE Trans. Image Process. 20(5), 1185–1198 (2011). https://doi.org/10.1109/TIP.2010.2092435

    Article  MathSciNet  Google Scholar 

  89. Li, C.F., Bovic, A.C.: Three-component weighted structural similarity index. Paper presented at the SPIE Conference on image quality and system performance, San Jose, California, Jan 19–22 (2009). https://doi.org/10.1117/12.811821

  90. Sheikh, H.R., Bovik, A.C., Veciana, G.: An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans. Image Process. 14(12), 2117–2128 (2005). https://doi.org/10.1109/TIP.2005.859389

    Article  Google Scholar 

  91. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. Paper presented at the International Conference on Acoustics, Speech, and Signal Processing ICASSP, Montreal, Quebec, Canada, May 17–21 (2004). https://doi.org/10.1109/ICASSP.2004.1326643

  92. Liu, Z., Laganière, R.: Phase congruence measurement for image similarity assessment. Pattern Recogn. Lett. 28(1), 166–172 (2007). https://doi.org/10.1016/j.patrec.2006.06.019

    Article  Google Scholar 

  93. Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011). https://doi.org/10.1109/TIP.2011.2109730

    Article  MathSciNet  Google Scholar 

  94. Huang, Y.M., Lei, H., Li, X.Y.: A survey on quantum machine learning. Chin. J. Comput. 41(1), 145–163 (2018). https://doi.org/10.11897/SP.J.1016.2018.00145

    Article  MathSciNet  Google Scholar 

  95. Zhu, J.M., Deng, C.: The Invention Relates to a Method and Device for Evaluating the Standardization of Written Chinese Characters, v1.0, Astrophysics Source Code Library (2012)

  96. Han, R.F., An, W.H., Xun, E.D., Li, Q.: Real-time grading evaluation of quality of strokes in Chinese characters handwriting. Paper presented at the 2nd International Conference on Computer Science and Applications CSA, Wuhan, Hubei, Nov 20–22 (2015). https://doi.org/10.1109/CSA.2015.23

  97. Pallawi, S., Sing, D.K.: Study of Alzheimer’s disease brain impairment and methods for its early diagnosis: a comprehensive survey. Int. J. Multim. Inf. Retr. 12(1), 1–7 (2023). https://doi.org/10.1007/s13735-023-00271-y

    Article  Google Scholar 

  98. Coates, A., Ng, A.Y.: Learning feature representations with k-means. Neural Netw. Tricks Trade Second Ed. 7700, 561–580 (2012). https://doi.org/10.1007/978-3-642-35289-8_30

    Article  Google Scholar 

  99. Dasgupta, S., Long, P.M.: Performance guarantees for hierarchical clustering. J. Comput. Syst. Sci. 70(4), 555–569 (2005). https://doi.org/10.1016/J.JCSS.2004.10.006

    Article  MathSciNet  Google Scholar 

  100. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. Paper presented at the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, Oregon, USA (1996). https://doi.org/10.5555/3001460.3001507

  101. Qi, H.N., Chen, F.N., Zhuang, L., Chen, P.: A size-unrestricted method for Chinese character writing structure assessment. J. Zhengzhou Univ. (Natural Science Edition) 40(3), 59–62 (2008). 1671-6841(2008)03-0059-04

  102. Song, C.X., Huang, F., Jin, S.Q., Bai, X.D., Qiu, H.B., Jiang, J., Li, Y.: Construction and optimization of characteristic fontsbased on Chinese character strokes and structures. Comput. Eng. Sci. 41(5), 933–941 (2019). https://doi.org/10.3969/j.issn.1007-130X.2019.05.023

    Article  Google Scholar 

  103. Sun, R., Lian, Z., Tang, Y., Xiao, J.: Aesthetic visual quality evaluation of Chinese handwritings. Paper presented at the Twenty-Fourth International Joint Conference on Artificial Intelligence IJCAI, Buenos Aires, Argentina, July 25–31 (2015)

  104. Zhang, H.R., Han, Z.Z., Li, C.G.: Support vector machine. Comput. Sci. 29(12), 135–137 (2002). https://doi.org/10.3969/j.issn.1002-137X.2002.12.038

    Article  Google Scholar 

  105. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004). https://doi.org/10.1023/B:STCO.0000035301.49549.88

    Article  MathSciNet  Google Scholar 

  106. Yang, J., Zhang, D., Frangi, A.F., Yangf, J.: Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 131–137 (2004). https://doi.org/10.1109/TPAMI.2004.10004

    Article  Google Scholar 

  107. Shlens, J.: A Tutorial on Principal Component Analysis (2014). Preprint at arXiv:1404.1100

  108. Zhai, J.X.: Research on the Aesthetic Quality Evaluation of Chinese Handwritings. Xi’an University of Technology, Shanxi (2017). https://doi.org/10.27398/d.cnki.gxalu.2017.000143

  109. Jian, L.Q.: Text recognition based on hu moment and zer nike moment. Sci. Technol. Inf. 17, 454–455 (2009). https://doi.org/10.3969/j.issn.1001-9960.2009.17.355

    Article  Google Scholar 

  110. Abeywickrama, T., Cheema, M.A., Taniar, D.: k-nearest neighbors on road networks: a journey in experimentation and in-memory implementation. Proc. VLDB Endow. 9(6), 492–503 (2016). https://doi.org/10.14778/2904121.2904125

    Article  Google Scholar 

  111. Xu, B., Wang, Q., Mao, Z., Lyu, Y., She, Q., Zhang, Y.: KNN prompting: beyond-context learning with calibration-free nearest neighbor inference (2023). https://doi.org/10.48550/arXiv.2303.13824

  112. Wen, L.M.: Calligraphy appreciation model and its implementation based on artistic feature. Comput. Eng. Des. 29(7), 1865–1868 (2008). https://doi.org/10.16208/j.issn1000-7024.2008.07.021

    Article  Google Scholar 

  113. Xu, S., Feng, L., Chai, Y., Hu, Y., Huang, L.: The properties of generalized offset linear canonical Hilbert transform and its applications. Int. J. Wavel. Multiresol. Inf. Process. 15(4), 1–16 (2017). https://doi.org/10.1142/S021969131750031X

    Article  MathSciNet  Google Scholar 

  114. Erdogan, Y.E., Narin, A.: Performance of empirical mode decomposition in automated detection of hypertension using electrocardiography. Paper presented at the 29th Signal Processing and Communications Applications Conference SIU, Istanbul, Turkey, June 9–11 (2021). https://doi.org/10.1109/SIU53274.2021.9477887

  115. Terzopoulos, D., Platt, J.C., Barr, A.H., Fleischer, K.W.: Elastically deformable models. Paper presented at the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, Anaheim, California, USA, July 27–31 (1987). https://doi.org/10.1145/37401.37427

  116. Terzopoulos, D., Fleischer, K.W.: Deformable models. Vis. Comput. 4(6), 306–331 (1988). https://doi.org/10.1007/BF01908877

    Article  Google Scholar 

  117. Hubel, D.H., Wiesel, T.N.: Receptive fields binocular interaction, and functional architecture in the cat’s visual cortex. J. Physiol. 160(1), 106–154 (1962). https://doi.org/10.1113/jphysiol.1962.sp006837

    Article  Google Scholar 

  118. Suganyadevi, S., Seethalakshmi, V., Balasamy, K.: A review on deep learning in medical image analysis. Int. J. Multim. Inf. Retr. 11(1), 19–38 (2022). https://doi.org/10.1007/s13735-021-00218-1

    Article  Google Scholar 

  119. Tran, P.V.: A Fully Convolutional Neural Network for Cardiac Segmentation in Short-Axis MRI (2016). Preprint at arXiv:1604.00494

  120. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back propagating errors. Nature 323, 533–536 (1986). https://doi.org/10.1038/323533a0

    Article  Google Scholar 

  121. Zhou, Z.: Overview of the development of bp neural network. Shanxi Electron. Technol. 137(2), 90–92 (2008)

    Google Scholar 

  122. Baldi, P.: Gradient descent learning algorithm overview: a general dynamical systems perspective. IEEE Trans. Neural Netw. 6(1), 182–195 (1995). https://doi.org/10.1109/72.363438

    Article  Google Scholar 

  123. Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., Han, J.: On the variance of the adaptive learning rate and beyond. Paper presented at the 8th International Conference on Learning Representations ICLR, Addis Ababa, Ethiopia, April 26–30 (2020)

  124. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Paper presented at the 26th Annual Conference on Neural Information Processing Systems NIPS, Lake Tahoe, Nevada, United States, December 3–6 (2012). https://doi.org/10.1145/3065386

  125. Jin, L.W., Zhong, Z.Y., Yang, Z., Yang, W.X., Xie, Z.C., Sun, J.: Applications of deep learning for handwritten Chinese character recognition: a review. Acta Autom. Sin. 42(8), 1125–1141 (2016). https://doi.org/10.16383/j.aas.2016.c150725

    Article  Google Scholar 

  126. Chen, W., Liu, C., Ji, Y.: Chinese character style transfer model based on convolutional neural network. Paper presented at the 31st International Conference on Artificial Neural Networks, ICANN, Bristol, UK, September 6–9 (2022). https://doi.org/10.1007/978-3-031-15937-4_47

  127. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern. Neural Netw. 1(2), 119–130 (1988). https://doi.org/10.1016/0893-6080(88)90014-7

    Article  Google Scholar 

  128. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. Paper presented at the IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR, Las Vegas, NV, USA, June 27–30 (2016). https://doi.org/10.1109/CVPR.2016.90

  129. Huang, J., Li, J., Gong, Y.: An analysis of convolutional neural networks for speech recognition. Paper presented at the IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP, South Brisbane, Queensland, Australia, April 19–24 (2015). https://doi.org/10.1109/ICASSP.2015.7178920

  130. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  131. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Paper presented at the 3rd International Conference on Learning Representations, ICLR, San Diego, CA, USA, May 7–9 (2015)

  132. Li, Z.: Research on automatic scoring method of chalk calligraphy based on template matching. Inner Mongolia Normal University, Inner Mongolia (2023). https://doi.org/10.27230/d.cnki.gnmsu.2023.000988

  133. Deng, P.: Research on Sample Recognition and Evaluation Model of Multi-feature Fusion of Chinese Handwriting. Chongqing University, Chongqing (2020)

    Google Scholar 

  134. Nenkova, A., Passonneau, R.J.: Evaluating content selection in summarization: the pyramid method. Paper presented at the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics HLT-NAACL, Boston, Massachusetts, USA, May 2–7 (2004)

  135. Lai, P.K., Yeung, D.Y., Pong, M.C.: A heuristic search approach to Chinese glyph generation using hierarchical character composition. Comput. Process. Orient. Lang. 10(3), 281–297 (1997)

    Google Scholar 

  136. Jin, L.W., Zhuang, C.B.: An intelligently verified algorithm for correctness and calligraphy of on-line handwritten Chinese characters. Signal Process. 21(z1), 276–279 (2005). https://doi.org/10.3969/j.issn.1003-0530.2005.z1.071

    Article  Google Scholar 

  137. Tan, C.K.: An algorithm for online strokes verification of Chinese characters using discrete features. Paper presented at the Eighth International Workshop on Frontiers in Handwriting Recognition IWFHR, Niagara-on-the-Lake, Ontario, Canada, August 6–8 (2002). https://doi.org/10.1109/IWFHR.2002.1030933

  138. Xiao, H., Jin, G.J., Wu, B.H., Chen, J.L., Zong, J.G.: An evaluation method and device for standard writing of Chinese characters, 1.0, Astrophysics Source Code Library (2012)

  139. Fei, Y.Y., Xun, E.D., Yu, D.: An approach to evaluating handwritten Chinese characters based on description language of the structure of Chinese characters. Paper presented at the The Second National Symposium on Writing and Computing CCF-NSCC, Beijing, China, October 27–28 (2012)

  140. Fan, J.P.: A method of computerizing the calligraphical rules basing on cc structure code. J. Chin. Inf. Process. 4, 43–52 (1990)

    Google Scholar 

  141. Xia, W.P., Jin, L.W.: A method for layout evaluation of online handwritten Chinese character quality based on template. Paper presented at the Chinese Conference on Pattern Recognition, Beijing, China, Oct 22–24 (2008). https://doi.org/10.1109/CCPR.2008.75

  142. Hu, Z., Leung, H., Xu, Y.: Stroke correspondence based on graph matching for detecting stroke production errors in Chinese character handwriting. Paper presented at the 8th Pacific Rim Conference on Multimedia, Hong Kong, China, December 11–14 (2007). https://doi.org/10.1007/978-3-540-77255-2_89

  143. Zeng, J., Inoue, T., Sanada, H., Tezuka, Y.: A data structure suitable for representing the calligraphic rules for Chinese character evaluation. Paper presented at the 9th International Conference on Pattern Recognition ICPR, Ergife Palace Hotel, Rome, Italy, Nov 14–17 (1988). https://doi.org/10.1109/ICPR.1988.28200

  144. Zeng, H., Sanada, H., Tezuka, Y.: A form evaluation system and its data structure for brush-written Chinese characters. J. Comput. Sci. Technol. 10(1), 35–41 (1995). https://doi.org/10.1007/BF02939520

    Article  Google Scholar 

  145. Liu, Y.F.: Automatic evaluation of font structure in handwritten drawing. J. Geomat. Sci. Technol. 17(1), 49–52 (2000). https://doi.org/10.3969/j.issn.1673-6338.2000.01.015

    Article  Google Scholar 

  146. Wang, Z., Sun, J.Z., Sun, M.J., Zhang, H.J.: Computer calligraphy based on autoregressive model. J. Eng. Gr. 27(5), 38–43 (2006). https://doi.org/10.3969/j.issn.1003-0158.2006.05.007

    Article  Google Scholar 

  147. Guo, C., Hu, X.T.: Feature extraction for calligraphy stroke based on computer image processing. J. Tianjin Univ. Sci. Technol. 25(5), 68–72 (2010). https://doi.org/10.13364/j.issn.1672-6510.2010.05.019

    Article  MathSciNet  Google Scholar 

  148. Chen, H.M.: Writing quality evaluation system. Electron. Technol. Softw. Eng. 4, 192–193 (2014)

    Google Scholar 

  149. Li, Y., Jiang, J., Deng, H.J.: The understanding, description, calculation realization and application of writing features of hard pen Chinese characters. e-Educ. Res. 36(4), 62–69 (2015). https://doi.org/10.13811/j.cnki.eer.2015.04.010

    Article  Google Scholar 

  150. Deng, X.X., Li, J.T., Li, M.: Computer evaluation of imitation in Chinese calligraphy. J. Gr. 35(6), 899–904 (2014). https://doi.org/10.3969/j.issn.2095-302X.2014.06.014

    Article  Google Scholar 

  151. Li, M.: Computer Evaluation of Chinese Calligraphy Copy. South China University of Technology, Guangzhou (2013)

    Google Scholar 

  152. Yu, K., Jiang, J.Q., Zhuang, Y.T.: Calligraphic characters retrieval based on skeleton similarity. J. Comput.-Aid. Des. Comput. Gr. 21(6), 746–751 (2009)

    Google Scholar 

  153. Li, K., Leung, H., Lam, S., Li-Tsang, C.W.P.: An assessment tool for judging the overall appearance of chinese handwriting based on opinions from occupational therapists. Paper presented at the 6th International Conference of Advances in Web Based Learning ICWL, Edinburgh, UK, August 15–17 (2007). https://doi.org/10.1007/978-3-540-78139-4_26

  154. Tang, K., Leung, H.: Reconstructing the correct writing sequence from a set of chinese character strokes. Paper presented at the 21st International Conference of Computer Processing of Oriental Languages. Beyond the Orient: The Research Challenges Ahead ICCPOL, Singapore, December 17–19 (2006). https://doi.org/10.1007/11940098_34

  155. Wang, K.: Research on handwritten Chinese character recognition and writing quality evaluation based on deep learning. Zhongnan Univ. Econ. Law Hubei (2021). https://doi.org/10.27660/d.cnki.gzczu.2021.002052

    Article  Google Scholar 

  156. Shi, H.: Construction and Application of Chinese Character Glyph Description Set Based on Quality Evaluation. Nanjing Normal University, Jiangsu (2021). https://doi.org/10.27245/d.cnki.gnjsu.2021.002301

  157. Zhao, Y., Zhang, X., Fu, B., Zhan, Z., Sun, H., Li, L., Zhang, G.: Evaluation and recognition of handwritten Chinese characters based on similarities. Appl. Sci. 12(17), 8521–8521 (2022). https://doi.org/10.3390/APP12178521

    Article  Google Scholar 

  158. Yang, S.: Research on Stroke Extraction and Evaluation Algorithm of Hard Pen Calligraphy Based on Chinese Character Skeleton. Nanjing University of Information Science and Technology, Jiangsu (2023). https://doi.org/10.27248/d.cnki.gnjqc.2023.001557

  159. Xu, M., Jiang, Y.L.J., Qiu, H.: Automatic evaluation of quality of online written Chinese chapter. J. Chin. Inf. Process. 33(4), 135–142 (2019). https://doi.org/10.3969/j.issn.1003-0077.2019.04.016

    Article  Google Scholar 

  160. Fan, S.: Research on the Evaluation Method for the Integrity of Handwritten Hard Script Based on Structure Replacement. Nanjing Normal University, Jiangsu (2017). https://doi.org/10.27245/d.cnki.gnjsu.2017.000077

  161. Wang, Y., Dai, Y.: Universal evaluation of writing exercises from prescribed form of characters’ quality. Comput. Eng. Appl. 46(29), 69–72 (2010). https://doi.org/10.3778/j.issn.1002-8331.2010.29.019

    Article  Google Scholar 

  162. Fan, L., Dai, Y., Qin, B.: Fuzzy evaluation for stroke force of handwritten Chinese character on touch screen. J. Chin. Inf. Process. 27(2), 91–97 (2013). https://doi.org/10.3969/j.issn.1003-0077.2013.02.014

    Article  Google Scholar 

  163. Zhang, J.N.: Quality Evaluation Method of Handwritten Chinese Characters Based Deep Learning. Harbin University of Science and Technology, Heilongjiang (2022). https://doi.org/10.27063/d.cnki.ghlgu.2022.000402

  164. Qin, B.M., Dai, Y., Fan, L.: Pre-processing of handwriting information for online writing guidance. Appl. Res. Comput. 29(9), 3365–3368 (2012). https://doi.org/10.3969/j.issn.1001-3695.2012.09.043

    Article  Google Scholar 

  165. Wang, Q.Z., Dai, Y., Fan, L., Sun, G.W.: Fuzzy analysis method for quality of handwritten Chinese characters. Comput. Eng. Appl. 49(21), 180–185 (2013). https://doi.org/10.3778/j.issn.1002-8331.1201-0323

    Article  Google Scholar 

  166. Han, C., Chou, C., Wu, C.: An interactive grading and learning system for Chinese calligraphy. Mach. Vis. Appl. 19(1), 43–55 (2008). https://doi.org/10.1007/s00138-007-0076-0

    Article  Google Scholar 

  167. Guo, J.F., Li, X., Pang, Z.Q., Shen, J.Y., Yu, M.: Research on custom fuzzy logic and generative adversarial networks in lmage highlight processing. J. Chin. Comput. Syst. 42(08), 1715–1719 (2020). https://doi.org/10.3969/j.issn.1000-1220.2021.08.023

    Article  Google Scholar 

  168. Li, H., Yu, J.X., Yin, S.L., Sun, K.: Analysis of human behavior recognition based on fuzzy logic. J. Shenyang Norm. Univ. (Natural Science Edition) 39(1), 54–59 (2021). https://doi.org/10.3969/j.issn.1673-5862.2021.01.011

    Article  Google Scholar 

  169. Li, Z., Qi, J., Yao, Y.Z.: A technique of handwritten recognition of Chinese characters based on fuzzy. Comput. Eng. 29(12), 96–97 (2003). https://doi.org/10.3969/j.issn.1000-3428.2003.12.040

    Article  Google Scholar 

  170. Tang, X.L., Liu, J.F., Jiang, W.: A new method of describing Chinese character stroke’s density. J. Harbin Inst. Technol. 29(6), 73–75 (1997)

    Google Scholar 

  171. Hu, Z., Leung, H., Xu, Y.: Automated Chinese handwriting error detection using attributed relational graph matching. Paper presented at the 7th International Conference of Advances in Web Based Learning - ICWL, Jinhua, China, August 20–22 (2008). https://doi.org/10.1007/978-3-540-85033-5_34

  172. Gao, Y., Jin, L., Li, N.: Chinese handwriting quality evaluation based on analysis of recognition confidence. Paper presented at the International Conference on Information and Automation (ICIA), Shenzhen, China, June 6–8 (2011). https://doi.org/10.1109/ICINFA.2011.5948991

  173. Xiao, A., Luo, L., Liu, J.: Improved hog and SVM hard-pen Chinese character classification algorithm. Comput. Eng. Des. 43(8), 2236–2243 (2022). https://doi.org/10.16208/j.issn1000-7024.2022.08.019

    Article  Google Scholar 

  174. Xu, S., Jiang, H., Lau, F.C., Pan, Y.: An Intelligent System for Chinese Calligraphy. Paper presented at the Twenty-Second AAAI Conference on Artificial Intelligence, Vancouver, British Columbia, Canada, July 22–26 (2007)

  175. Huang, F., Gao, N.N., Qiu, H.B., Li, Y.: Experiment on the correlation between the integrity of touch-screen Chinese characters and paper writing. China Educ. Technol. 346(11), 121–126 (2015)

    Google Scholar 

  176. Geng, X.Y., Xu, W.S., Wu, J.W.: Quality evaluation model of Chinese characters based on neural network. Comput. Mod. 221(1), 96–99 (2014). https://doi.org/10.3969/j.issn.1006-2475.2014.01.0023

    Article  Google Scholar 

  177. Zhuang, Z.M.: Handwritten Chinese Character Recognition and Aesthetic Grading Based on Deep Learning. Beijing Uniiversity of Posts and Telecommunications, Beijing (2016)

    Google Scholar 

  178. Zhang, J.: Automatic quality evaluation of chinese character handwriting by foreign students based on handwriting movement characteristics. Paper presented at the 3rd International Conference on Computer Science and Application Engineering, CSAE, Sanya, China, October 22–24 (2019). https://doi.org/10.1145/3331453.3361668

  179. Liu, C., Yin, F., Wang, D., Wang, Q.: CASIA online and offline Chinese handwriting databases. Paper presented at the 11st International Conference on Document Analysis and Recognition ICDAR, Beijing, China, September 18–21 (2011). https://doi.org/10.1109/ICDAR.2011.17

  180. Zhang, H., Guo, J., Chen, G., Li, C.: HCL2000—a large-scale handwritten Chinese character database for handwritten character recognition. Paper presented at the 10th International Conference on Document Analysis and Recognition ICDAR, Barcelona, Spain, July 26–29 (2009). https://doi.org/10.1109/ICDAR.2009.15

  181. Yan, C.: Talk about chalk blackboard writing art. J. Teach. Manag. 13, 31–32 (2001). https://doi.org/10.3969/j.issn.1004-5872-C.2001.13.018

    Article  Google Scholar 

  182. Qu, L.N.: Application and research of on-line handwritten Chinese character recognition system. China Comput. Commun. 18, 71–72 (2018)

    Google Scholar 

  183. Li, L.Y., Gang, Z., Chen, D.Y.: Offline handwritten Chinese character recognition based on DBN and CNN fusion model. J. Harbin Univ. Sci. Technol. 25(3), 137–143 (2020). https://doi.org/10.15938/j.jhust.2020.03.021

    Article  Google Scholar 

  184. Wu, C.: Research on the Analysis Model of Chinese-English Essay Translation Quality. Guilin University of Electronic Technology, Guangxi (2018)

    Google Scholar 

  185. Suganthi, M., Prakash, R.A.: An offline English optical character recognition and NER using LSTM and adaptive neuro-fuzzy inference system. J. Intell. Fuzzy Syst. 44(3), 3877–3890 (2023). https://doi.org/10.3233/JIFS-221486

    Article  Google Scholar 

  186. VeeraSekharReddy, B., Rao, K.S., Koppula, N.: An attention based bi-lstm densenet model for named entity recognition in English texts. Wirel. Pers. Commun. 130(2), 1435–1448 (2023). https://doi.org/10.1007/s11277-023-10339-x

    Article  Google Scholar 

  187. Zhang, Z., Wang, X., Zhu, W.: Automated machine learning on graphs: a survey. Paper presented at the 30th International Joint Conference on Artificial Intelligence IJCAI, Virtual Event/Montreal, Canada, Aug 19–27 (2021). https://doi.org/10.24963/ijcai.2021/637

  188. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. Paper presented at the 30th Advances in Neural Information Processing Systems NIPS, Long Beach, CA, USA, Dec 4–9 (2017)

  189. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. Paper presented at the IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR, San Diego, CA, USA, Jun 4–9 (2005). https://doi.org/10.1109/CVPR.2005.202

  190. Ma, K., Fang, Y.: Image quality assessment in the modern age. Paper presented at the ACM Multimedia Conference ACM MM, Virtual Event, China, October 20–24 (2021). https://doi.org/10.1145/3474085.3478870

  191. Wang, Z.M.: Review of no-reference image quality assessment. Acta Autom. Sin. 41(6), 1062–1079 (2015). https://doi.org/10.16383/j.aas.2015.c140404

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Postgraduate Research & Practice Innovation Program of Jiangsu Province KYCX24_3320, National Natural Science Foundation of China (NSFC Grant No. 61773272, 61272258, 61301299, 615-72085, 61170124, 61272005, 62376041), Provincial Natural Science Foundation of Jiangsu, China (Grant No. BK20151254, BK201512-60), Science and Education Innovation based Cloud Data fusion Foundation of Science and Technology Development Center of Education Ministry, China (2017B03112), Six talent peaks Project in Jiangsu Province, China (DZXX-027), Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, China (Grant No. 93K172016K08), and Collaborative Innovation Center of Novel Software Technology and Industrialization, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunping Liu.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Communicated by Qianqian Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Su, J., Song, W. et al. Quality evaluation methods of handwritten Chinese characters: a comprehensive survey. Multimedia Systems 30, 194 (2024). https://doi.org/10.1007/s00530-024-01396-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00530-024-01396-8

Keywords

Navigation