Abstract
Local binary pattern (LBP) is a simple and efficient operator to describe local image pattern. It could be regarded as a binary representation of 1st order derivative between the central and its neighbors. Based on LBP definition, in this paper, a framework of local directional derivative pattern (LDDP) is proposed which could represent high order directional derivative feature, and LBP is a special case of LDDP. Under the proposed framework, like traditional LBP, rotation invariance could be easily defined. As different order derivative information contains complementary features, better recognition accuracy could be achieved by combining different order LDDPs which is validated by two large public texture databases, Outex and CUReT.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Tuceryan M, Jain AK (1993) Texture analysis, handbook of pattern recognition and computer vision, chap 2. In: Chen CH, Pau LF, Wang PSP (eds). World Scientific Publishing Co., pp 235–276
Cohen FS, Fan Z, Attali S (1991) Automated inspection of textile fabrics using textural models. IEEE Trans Pattern Anal Mach Intell 13(8):803–808
Anys H, He DC (1995) Evaluation of textural and multipolarization radar features for crop classification. IEEE Trans Geosci Remote Sens 33(5):1170–1181
Ji Q, Engel J, Craine E (2000) Texture analysis for classification of cervix lesions. IEEE Trans Med Imaging 19(11):1144–1149
Haralik RM, Shanmugam K, Dinstein I (1973) Texture features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621
Bovik AC, Clark M, Geisler WS (1990) Multichannel texture analysis using localized spatial filters. IEEE Trans Pattern Anal Mach Intell 12(1):55–73
Manjunath BS, Ma WY (1996) Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18(8):837–842
Chang T, Kuo CCJ (1993) Texture analysis and classification with tree-structured wavelet transform. IEEE Trans Image Process 2(4):429–441
Laine A, Fan J (1993) Texture classification by wavelet packet signatures. IEEE Trans Pattern Anal Mach Intell 15(11):1186–1191
Unser M (1995) Texture classification and segmentation using wavelet frames. IEEE Trans Image Process 4(11):1549–1560
Kashyap RL, Khotanzed A (1986) A model-based method for rotation invariant texture classification. IEEE Trans Pattern Anal Mach Intell 8(4):472–481
Mao J, Jain AK (1992) Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recogn 25(2):173–188
Chen JL, Kundu A (1994) Rotation and gray scale transform invariant texture identification using wavelet decomposition and hidden Markov model. IEEE Trans Pattern Anal Mach Intell 16(2):208–214
Wu WR, Wei SC (1996) Rotation and gray-scale transform-invariant texture classification using spiral resampling, subband decomposition, and hidden Markov model. IEEE Trans Image Process 5(10):1423–1434
Porter R, Canagarajah N (1997) Robust rotation-invariant texture classification: wavelet, Gabor, and GMRF based schemes. IEE Proc Vis Image Signal Process 144(3):180–188
Arof H, Deravi F (1998) Circular neighbourhood and 1-D DFT features for texture classification and segmentation. IEE Proc Vis Image Signal Process 145(3):167–172
Ojala T, Pietikäinen M, Mäenpää TT (2002) Multiresolution gray-scale and rotation invariant texture classification with Local Binary Pattern. IEEE Trans Pattern Anal Mach Intell 24(7):971–987
Varma M, Zisserman A (2005) A statistical approach to texture classification from single images. Int J Comput Vis 62(1–2):61–81
Varma M, Zisserrman A (2009) A statistical approach to material classification using image patch examplars. IEEE Trans Pattern Anal Mach Intell 31(11):2032–2047
Lazebnik S, Schmid C, Ponce J (2005) A sparse texture representation using local affine regions. IEEE Trans Pattern Anal Mach Intell 27(8):1265–1278
Xu Y, Ji H, Fermuller C (2009) Viewpoint invariant texture description using fractal analysis. Int J Comput Vis 83(1):85–100
Mellor M, Hong B, Brady M (2008) Locally rotation, contrast, and scale invariant descriptors for texture analysis. IEEE Trans Pattern Anal Mach Intell 30(1):52–61
Ojala T, Mäenpää T, Pietikäinen M, Viertola J, Kyllönen J, Huovinen S (2002) Outex—new framework for empirical evaluation of texture analysis algorithm. In: International conference on pattern recognition. pp 701–706
Ahonen T, Hadid A, Pietikäinen M (2006) Face recognition with Local Binary Patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041
Zhang B, Zhang L, Zhang D, Shen L (2010) Directional binary code with application to PolyU near-infrared face database. Pattern Recogn Lett 31(14):2337–2344
Zhao G, Pietikäinen M (2007) Dynamic texture recognition using Local Binary Patterns with an application to facial expressions. IEEE Trans Pattern Anal Mach Intell 27(6):915–928
Huang X, Li SZ, Wang Y (2004) Shape localization based on statistical method using extended local binary pattern. In: Proceedings of the international conference on image and graphics. pp 184–187
Heikkilä M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recogn 42(3):425–436
Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118
Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650
Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544
Hyvärinen A (1999) Survey on independent component analysis. Neural Comput Surv 2:94–128
Dana KJ, van Ginneken B, Nayar SK, Koenderink JJ (1999) Reflectance and texture of real world surfaces. ACM Trans Graph 18(1):1–34
Varma M, Zisserman A (2004) Unifying statistical texture classification framework. Image Vis Comput 22(14):1175–1183
Rubner Y, Puzicha J, Tomasi C, Buhmann JM (2001) Empirical evaluation of dissimilarity measures for color and texture. Comput Vis Image Underst 84(1):25–43
Woods K, Kegelmeyer WP Jr, Bowyer K (1997) Combination of multiple classifiers using local accuracy estimates. IEEE Trans Pattern Anal Mach Intell 19(4):405–410
Kittler J, Hatef M, Duin RP, Matas JG (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20(3):226–239
Xie J, Zhang L, You J, Zhang D (2010) Texture classification via patch-based sparse texton learning. In: international conference on image processing. pp 2737–2740
Pietikäinen M, Nurmela T, Mäenpää T, Turtinen M (2004) View-based recognition of real-world textures. Pattern Recogn 37(2):313–323
Xu Y, Song F (2008) Feature extraction based on a linear separability criterion. Int J Innov Comput Inf Control 4(4):857–865
Xu Y, Yang J, Jin Z (2004) A novel method for Fisher discriminant analysis. Pattern Recogn 37(2):381–384
Acknowledgments
The authors wish to thank the anonymous reviewers for the constructive advice on the revision of the manuscript. The authors sincerely thank MVG and VGG for sharing the source codes of LBP and VZ_MR8. The funding support from Hong Kong Government under its GRF scheme (5341/08E and 5366/09E), the research grant from the Hong Kong Polytechnic University (1-ZV5U), and the NSFC (Nos. 60803090 and 61020106004) are greatly appreciated.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Guo, Z., Li, Q., You, J. et al. Local directional derivative pattern for rotation invariant texture classification. Neural Comput & Applic 21, 1893–1904 (2012). https://doi.org/10.1007/s00521-011-0586-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-011-0586-6