Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Classification rule mining using ant programming guided by grammar with multiple Pareto fronts

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper proposes a multi-objective ant programming algorithm for mining classification rules, MOGBAP, which focuses on optimizing sensitivity, specificity, and comprehensibility. It defines a context-free grammar that restricts the search space and ensures the creation of valid individuals, and its heuristic function presents two complementary components. Moreover, the algorithm addresses the classification problem from a new multi-objective perspective specifically suited for this task, which finds an independent Pareto front of individuals per class, so that it avoids the overlapping problem that appears when measuring the fitness of individuals from different classes. A comparative analysis of MOGBAP using two and three objectives is performed, and then its performance is experimentally evaluated throughout 15 varied benchmark data sets and compared to those obtained using another eight relevant rule extraction algorithms. The results prove that MOGBAP outperforms the other algorithms in predictive accuracy, also achieving a good trade-off between accuracy and comprehensibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. University of California at Irvine data set repository is available at http://www.ics.uci.edu/ml/datasets.html.

  2. The Weka machine learning software is publicly available at http://www.cs.waikato.ac.nz/ml/index.html.

  3. Myra framework is available at http://myra.sourceforge.net/.

  4. PSO/ACO2 is publicly available at http://sourceforge.net/projects/psoaco2.

  5. JCLEC framework is at http://jclec.sourceforge.net.

References

  • Abbass HA, Hoai X, Mckay RI (2002) AntTAG: a new method to compose computer programs using colonies of ants. In: IEEE Congress on evolutionary computation (IEEE CEC), pp 1654–1659

  • Alatas B, Akin E (2009) Multi-objective rule mining using a chaotic particle swarm optimization algorithm. Knowledge-Based Syst 22(6):455–460

    Google Scholar 

  • Angus D, Woodward C (2009) Multiple objective ant colony optimisation. Swarm Intell 3(1):69–85

    Article  Google Scholar 

  • Barron A, Rissanen J, Yu B (1998) The minimum description length principle in coding and modeling. IEEE Trans Inf Theory 44(6):2743–2760

    Article  MathSciNet  MATH  Google Scholar 

  • Blum C, Puchinger J, Raidl GR, Roli A (2011) Hybrid metaheuristics in combinatorial optimization: a survey. Appl Soft Comput 11(6):4135–4151

    Article  Google Scholar 

  • Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv 35(3):268–308

    Article  Google Scholar 

  • Bojarczuk CC, Lopes HS, Freitas AA, Michalkiewicz EL (2004) A constrained-syntax genetic programming system for discovering classification rules: application to medical data sets. Artif Intell Med 30:27–48

    Article  Google Scholar 

  • Bonabeu E, Eric T, Dorigo M (1999) Swarm intelligence: from natural to artificial systems. Oxford University, Oxford

  • Boryczka M (2005) Eliminating introns in ant colony programming. Fundamenta Informaticae 68(1–2):1–19

    MathSciNet  MATH  Google Scholar 

  • Boryczka M (2008) Ant colony programming with the candidate list. In: KES International conference on agent and multi-agent systems: technologies and applications (KES-AMSTA). LNAI, vol 4953, pp 302–311

  • Boryczka M, Czech ZJ (2002) Solving approximation problems by ant colony programming. In: Genetic and evolutionary computing late breaking papers, pp 39–46

  • Boryczka M, Czech ZJ, Wieczorek W (2003) Ant colony programming for approximation problems. In: Genetic and evolutionary computation conference (GECCO), pp 142–143

  • Chen Y, Yang B, Dong J (2004) Evolving flexible neural networks using ant programming and PSO algorithms. In: Advances in neural networks ISSN. LNCS, vol 3173

  • Cios K, Pedrycz W, Swiniarski R, Kurgan L (2010) Data mining: a knowledge discovery approach. Springer, Berlin

  • Cohen W (1995) Fast effective rule induction. In: International conference on machine learning (ICML), pp 115–123

  • Crepinšek M, Kosar T, Mernik M, Cervelle J, Forax R, Roussel G (2010) On automata and language based grammar metrics. Comput Sci Inf Syst 7(2):309–329

    Article  Google Scholar 

  • Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist nondominated sorting genetic algorithm for multi-objective optimisation: NSGA-II. In: International conference on parallel problem solving from nature (PPSN). Springer, Berlin, pp 849–858

  • Dehuri S, Patnaik S, Ghosh A, Mall R (2008) Application of elitist multi-objective genetic algorithm for classification rule generation. Appl Soft Comput 8:477–487

    Article  Google Scholar 

  • Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

  • Dorigo M, Maniezzo V, Colorni A (1996) The ant system: Optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B 26:29–41

    Article  Google Scholar 

  • Dorigo M, Stützle T (2002) The ant colony optimization metaheuristic: algorithms, applications and advances. International series in operations research and management science. Kluwer Academic Publishers, Dordrecht

  • Espejo P, Ventura S, Herrera F (2010) A survey on the application of genetic programming to classification. IEEE Trans Syst Man Cybern Part C Appl Rev 40(2):121–144

    Article  Google Scholar 

  • Fayyad UM, Irani KB (1993) Multi-interval discretization of continuous-valued attributes for classification learning. In: International joint conference on uncertainly in artificial intelligence (IJCAI), pp 1022–1029

  • Floreano D, Drr P, Mattiussi C (2008) Neuroevolution: from architectures to learning. Evol Intell 1:47–62

    Article  Google Scholar 

  • Frank A, Asuncion A UCI machine learning repository (2010). URL http://archive.ics.uci.edu/ml

  • Frank E, Witten IH (1998) Generating accurate rule sets without global optimization. In: International conference on machine learning (ICML), pp 144–151

  • García-Martínez C, Cordón O, Herrera F (2007) A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. Eur J Oper Res 180(1):116–148

    Article  MATH  Google Scholar 

  • Geyer-Schulz A (1995) Fuzzy rule-based expert systems and genetic machine learning, studies in fuzziness, vol 3. Physica, Heidelberg

  • Green J, Whalley J, Johnson C (2004) Automatic programming with ant colony optimization. In: UK workshop on computational intelligence, pp 70–77

  • Holden N, Freitas AA (2008) A hybrid PSO/ACO algorithm for discovering classification rules in data mining. J Artif Evol Appl 2008:2:1–2:11

    Google Scholar 

  • Huang TM, Kecman V, Kopriva I (2006) Support vector machines in classification and regression—an introduction. In: Kernel based algorithms for mining huge data sets: supervised, semi-supervised, and unsupervised learning, studies in computational intelligence. Springer, New York

  • Ishibuchi H, Nojima Y (2007) Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. Int J Approx Reason 44(1):4–31

    Article  MathSciNet  MATH  Google Scholar 

  • Kapočite-Dzikiene J, Raškinis A (2008) Hierarchical classificator: a cognitive approach to decision tree building. Inf Technol Control 37:43–51

    Google Scholar 

  • Keber C, Schuster MG (2002) Option valuation with generalized ant programming. In: Genetic and evolutionary computation conference (GECCO), pp 74–81

  • Kosar T, Oliveira N, Mernik M, Pereira MJV, Črepinšek M, da Cruz DC, Henriques PR (2010) Comparing general-purpose and domain-specific languages: An empirical study. Comput Sci Inf Syst 7(2):247–264

    Article  Google Scholar 

  • Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. The MIT Press, Cambridge

  • Kumaresan N (2011) Optimal control for stochastic linear quadratic singular periodic neuro Takagi-Sugeno (T-S) fuzzy system with singular cost using ant colony programming. Appl Math Model 35(8):3797–3808

    Article  MathSciNet  MATH  Google Scholar 

  • Lanzi P (2008) Learning classifier systems: then and now. Evol Intell 1:63–82

    Article  Google Scholar 

  • Martens D, Baesens B, Fawcett T (2011) Editorial survey: swarm intelligence for data mining. Mach Learn 82:1–42

    Article  Google Scholar 

  • Martens D, De Backer M, Vanthienen J, Snoeck M, Baesens B (2007) Classification with ant colony optimization. IEEE Trans Evol Comput 11:651–665

    Article  Google Scholar 

  • Mernik M, Heering J, Sloane AM (2005) When and how to develop domain-specific languages. ACM Comput Surv 37(4):316–344

    Article  Google Scholar 

  • Mernik M, Črepinšek M, Kosar T, Rebernak D, Žumer V (2004) Grammar-based systems: definition and examples. Informatica 28(3):245–255

    MATH  Google Scholar 

  • Mullen RJ, Monekosso D, Barman S, Remagnino P (2009) A review of ant algorithms. Expert Syst Appl 36:9608–9617

    Article  Google Scholar 

  • Olmo JL, Romero JR, Ventura S (2010) A grammar based ant programming algorithm for mining classification rules. In: IEEE congress on evolutionary computation (IEEE CEC), pp 225–232

  • Olmo JL, Romero JR, Ventura S (2011) Using ant programming guided by grammar for building rule-based classifiers. IEEE Trans Syst Man Cybern Part B Cybern 41(6):1585–1599

    Article  Google Scholar 

  • Otero F, Freitas AA, Johnson C (2008) cAnt-Miner: an ant colony classification algorithm to cope with continuous attributes. In: International conference on Swarm Intelligence (ANTS). LNCS, vol 5217, pp 48–59

  • Otero FEB, Freitas AA, Johnson CG (2009) Handling continuous attributes in ant colony classification algorithms. In: IEEE symposium on computational intelligence and data mining (IEEE CIDM), pp 225–231

  • Parpinelli R, Freitas AA, Lopes HS (2002) Data mining with an ant colony optimization algorithm. IEEE Transactions Evol Comput 6:321–332

    Article  Google Scholar 

  • Roux O, Fonlupt C (2000) Ant programming: or how to use ants for automatic programming. In: International conference on Swarm Intelligence (ANTS), pp 121–129

  • Rudokaite-Margelevičiene D, Pranevičius H, Margelevičius M (2006) Data classification using Dirichlet mixtures. Inf Technol Control 35:157–166

    Google Scholar 

  • Salama K, Abdelbar A, Freitas A (2011) Multiple pheromone types and other extensions to the ant-miner classification rule discovery algorithm. Swarm Intell 5:149–182

    Google Scholar 

  • Salehi-Abari A, White T (2008) Enhanced generalized ant programming (EGAP). In: Genetic and evolutionary computation conference (GECCO), pp 111–118

  • Salehi-Abari A, White T (2009) The uphill battle of ant programming vs. genetic programming. In: International joint conference on computational intelligence (IJCCI), pp 171–176

  • Shirakawa S, Ogino S, Nagao T (2008) Dynamic ant programming for automatic construction of programs. IEEE Trans Electr Electron Eng 3(5):540–548

    Article  Google Scholar 

  • Stützle T, Hoos HH (2000) MAX–MIN ant system. Future Gener Comput Syst 16:889–914

    Article  Google Scholar 

  • Torácio A (2009) Multiobjective particle swarm optimization in classification-rule learning, chap. 3. Springer, Berlin, pp 37–64

  • Ventura S, Romero C, Zafra A, Delgado JA, Hervás C (2007) JCLEC: a java framework for evolutionary computation. Soft Comput 12(4):381–392

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Regional Government of Andalusia and the Ministry of Science and Technology, projects P08-TIC-3720 and TIN-2011-22408, and FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ventura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olmo, J.L., Romero, J.R. & Ventura, S. Classification rule mining using ant programming guided by grammar with multiple Pareto fronts. Soft Comput 16, 2143–2163 (2012). https://doi.org/10.1007/s00500-012-0883-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-012-0883-8

Keywords

Navigation