Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Stronger Counterexamples to the Topological Tverberg Conjecture

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

Denote by \(\Delta _M\) the M-dimensional simplex. A map \(f:\Delta _M\rightarrow {{\mathbb {R}}}^d\) is an almost r-embedding if \(f(\sigma _1)\cap \ldots \cap f(\sigma _r)=\emptyset \) whenever \(\sigma _1,\ldots ,\sigma _r\) are pairwise disjoint faces. A counterexample to the topological Tverberg conjecture asserts that if r is not a prime power and \(d\ge 2r+1\), then there is an almost r-embedding \(\Delta _{(d+1)(r-1)}\rightarrow {{\mathbb {R}}}^d\). This was improved by Blagojević–Frick–Ziegler using a simple construction of higher-dimensional counterexamples by taking k-fold join power of lower-dimensional ones. We improve this further (for d large compared to r): If r is not a prime power and \(N=(d+1)r-r\Big \lceil \dfrac{d+2}{r+1}\Big \rceil -2\), then there is an almost r-embedding \(\Delta _N\rightarrow {{\mathbb {R}}}^d\). The improvement follows from our stronger counterexamples to the r-fold van Kampen–Flores conjecture. Our proof is based on generalizations of the Mabillard–Wagner theorem on construction of almost r-embeddings from equivariant maps, and of the Özaydin theorem on existence of equivariant maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For a finite cyclic or dihedral group G, and a certain representation space V of G, G-equivariant maps from the classifying space EG to \(V-0\) were constructed in [8]. Theorem 2.2 should also be compared to [4, Theorem 3.6 and the paragraph afterwards]. That reference takes a group G from a certain class and proves that there exists some representation W of G, for which there exist G-equivariant maps \(X \rightarrow S(W)\) for certain G-spaces X. However, \(G=\Sigma _r\) does not belong to that class, and the \(\Sigma _r\)-space S(W) described in [4, Theorem 3.6 and the paragraph afterwards] need not coincide with the \(\Sigma _r\)-space \({{\mathbb {R}}}^{2\times r}-\delta _r\) given by Theorem 2.2.

  2. E.g. take \(h_{-,t}(x) = \frac{h_{-,1/2}(x)}{2-2t+(2t-1)|h_{-,1/2}(x)|}\).

References

  1. Avvakumov, S., Mabillard, I., Skopenkov, A., Wagner, U.: Eliminating higher-multiplicity intersections, III. Codimension 2. Israel J. Math. 245, 501–534 (2021). arXiv:1511.03501

    Article  MathSciNet  MATH  Google Scholar 

  2. Avvakumov, S., Karasev, R.: Envy-free division using mapping degree. Mathematika 67(1), 36–53 (2020). arXiv:1907.11183

    Article  MathSciNet  Google Scholar 

  3. Avvakumov, S., Kudrya, S.: Vanishing of all equivariant obstructions and the mapping degree. Discr. Comp. Geom. 66(3), 1202–1216 (2021). arXiv:1910.12628

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartsch, T.: Topological methods for variational problems with symmetries. Lecture Notes in Mathematics, vol. 1560. Springer-Verlag, Berlin (1993)

    Book  MATH  Google Scholar 

  5. Bárány, I., Blagojević, P.V.M., Ziegler, G.M.: Tverberg’s Theorem at 50: extensions and counterexamples. Notices Amer. Math. Soc. 63(7), 732–739 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blagojević, P.V.M., Frick, F., Ziegler, G.M.: Tverberg plus constraints. Bull. Lond. Math. Soc. 46(5), 953–967 (2014). arXiv:1401.0690

    Article  MathSciNet  MATH  Google Scholar 

  7. Blagojević, P.V.M., Frick, F., Ziegler, G.M.: Barycenters of polytope Skeleta and counterexamples to the topological Tverberg Conjecture, via constraints. J. Eur. Math. Soc. 21(7), 2107–2116 (2019). arXiv:1510.07984

    Article  MathSciNet  MATH  Google Scholar 

  8. Basu, S., Ghosh, S.: Equivariant maps related to the topological Tverberg conjecture. Homol. Homotopy Appl. 19(1), 155–170 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bárány, I., Soberón, P.: Tverberg’s theorem is 50 years old: a survey. Bull. Amer. Math. Soc. (N.S.) 55(4), 459–492 (2018). arXiv:1712.06119

    Article  MathSciNet  MATH  Google Scholar 

  10. Blagojević, P.V.M., Ziegler, G.M.: Beyond the Borsuk-Ulam theorem: the topological Tverberg story. In: Loebl, M., Nešetřil, J., Thomas, R. (eds.) A journey through discrete mathematics, pp. 273–341. Springer, Cham (2017) . arXiv:1605.07321v3

    Chapter  Google Scholar 

  11. Fomenko, A.T., Fuchs, D.B.: Homotopical topology. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  12. Frick, F.: Counterexamples to the topological Tverberg conjecture. arXiv:1502.00947v1

  13. Frick, F.: Counterexamples to the topological Tverberg conjecture. Oberwolfach Reports 12(1), 318–321 (2015). arXiv:1502.00947

    MathSciNet  Google Scholar 

  14. Frick, F., Soberón, P.: The topological Tverberg problem beyond prime powers. arXiv:2005.05251

  15. Gromov, M.: Singularities, expanders and topology of maps. Part 2: from combinatorics to topology via algebraic isoperimetry. Geomet. Funct. Anal. 20(2), 416–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lucas, E.: Théorie des fonctions numériques simplement périodiques. Part II. Amer. J. Math. 1(3), 197–240 (1878)

    Article  MathSciNet  Google Scholar 

  17. Mabillard, I., Wagner, U.: Eliminating Tverberg Points, I. An Analogue of the Whitney Trick, Proc. of the 30th Annual Symp. on Comp. Geom. (SoCG’14), ACM, New York, pp. 171–180 (2014)

  18. Mabillard, I., Wagner, U.: Eliminating Higher-Multiplicity Intersections, I. A Whitney Trick for Tverberg-type problems. arXiv:1508.02349

  19. Mabillard, I., Wagner, U.: Eliminating higher-multiplicity intersections, II. The deleted product criterion in the \(r\)-metastable range. arXiv:1601.00876v2

  20. Mabillard, I., Wagner, U.: Eliminating higher-multiplicity intersections, II. The deleted product criterion in the r-metastable range, Proceedings of the 32nd Annual Symposium on Computational Geometry (SoCG’16)

  21. Özaydin, M.: Equivariant maps for the symmetric group, unpublished, http://minds.wisconsin.edu/handle/1793/63829

  22. Shlosman, S.: Topological Tverberg Theorem: the proofs and the counterexamples. Russian Math. Surveys 73(2), 175182 (2018). arXiv:1804.03120

    Article  MathSciNet  MATH  Google Scholar 

  23. Skopenkov, A.: A user’s guide to the topological Tverberg Conjecture. Abridged earlier published version: Russian Math. Surveys 73(2), 323–353 (2018). arXiv:1605.05141v4

    MATH  Google Scholar 

  24. Skopenkov, A.: Eliminating higher-multiplicity intersections in the metastable dimension range. arXiv:1704.00143

Download references

Acknowledgements

We are grateful to M. Berezovik, F. Frick, A. Magazinov, and the anonymous referees for helpful suggestions.

Funding

S. Avvakumov: Supported by the Austrian Science Fund (FWF), Project P31312-N35 and the European Research Council under the European Union’s Seventh Framework Programme ERC Grant agreement ERC StG 716424–CASe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Karasev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avvakumov, S., Karasev, R. & Skopenkov, A. Stronger Counterexamples to the Topological Tverberg Conjecture. Combinatorica 43, 717–727 (2023). https://doi.org/10.1007/s00493-023-00031-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-023-00031-w

Keywords

Mathematics Subject Classification

Navigation