Nothing Special   »   [go: up one dir, main page]

Skip to main content

Remarks on Schur’s Conjecture

  • Conference paper
Computational Geometry and Graphs (TJJCCGG 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8296))

Included in the following conference series:

Abstract

Let P be a set of n > d points in ℝd for d ≥ 2. It was conjectured by Schur that the maximum number of (d − 1)-dimensional regular simplices of edge length diam(P), whose every vertex belongs to P, is n. We prove this statement under the condition that any two of the simplices share at least d − 2 vertices. It is left as an open question to decide whether this condition is always satisfied. We also establish upper bounds on the number of all 2- and 3-dimensional simplices induced by a set P ⊂ ℝ3 of n points which satisfy the condition that the lengths of their sides belong to the set of k largest distances determined by P.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dolnikov, V.L.: Some properties of graphs of diameters. Discrete Comput. Geom. 24, 293–299 (2000)

    Article  MathSciNet  Google Scholar 

  2. Erdős, P.: On sets of distances of n points. Amer. Math. Monthly 53, 248–250 (1946)

    Article  MathSciNet  Google Scholar 

  3. Erdős, P., Pach, J.: Variations on the theme of repeated distances. Combinatorica 10, 261–269 (1990)

    Article  MathSciNet  Google Scholar 

  4. Hopf, H., Pannwitz, E.: Aufgabe Nr. 167. Jahresbericht Deutsch. Math.-Verein 43, 114 (1934)

    Google Scholar 

  5. Grünbaum, B.: A proof of Vázsonyi’s conjecture. Bull. Res. Council Israel, Sect. A 6, 77–78 (1956)

    MathSciNet  Google Scholar 

  6. Heppes, A.: Beweis einer Vermutung von A. Vázsonyi. Acta Math. Acad. Sci. Hungar. 7, 463–466 (1956)

    Article  MathSciNet  Google Scholar 

  7. Kupavskii, A.: Diameter graphs in ℝ4 (manuscript, 2013), http://arxiv.org/abs/1306.3910

  8. Kupitz, Y.S., Martini, H., Wegner, B.: Diameter graphs and full equi-intersectors in classical geometries. In: IV International Conference in “Stoch. Geo., Conv. Bodies, Emp. Meas. & Apps. to Eng. Sci.”, vol. II, Rend. Circ. Mat. Palermo (2) Suppl. No. 70, part II, pp. 65–74 (2002)

    Google Scholar 

  9. Morić, F., Pach, J.: Large simplices determined by finite point sets, Contr. to Alg. and Geom. 54, 45–57 (2013), for a slightly updated version http://www.math.nyu.edu/~pach/publications/sim_short_final.pdf

  10. Schur, Z., Perles, M.A., Martini, H., Kupitz, Y.S.: On the number of maximal regular simplices determined by n points in ℝd. In: Aronov et al. (eds.) Discrete and Computational Geometry, The Goodman-Pollack Festschrift, pp. 767–787. Springer (2003)

    Google Scholar 

  11. Spencer, J., Szemerédi, E., Trotter, W.T.: Unit distances in the Euclidean plane. In: Bollobás, B. (ed.) Graph Theory and Combinatorics, pp. 293–303. Academic Press, London (1984)

    Google Scholar 

  12. Straszewicz, S.: Sur un problème géométrique de P. Erdős. Bull. Acad. Pol. Sci., Cl. III 5, 39–40 (1957)

    MathSciNet  MATH  Google Scholar 

  13. Swanepoel, K.J.: Unit distances and diameters in Euclidean spaces. Discrete Comput. Geom. 41, 1–27 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Swanepoel, K.J.: A new proof of Vázsonyi’s conjecture. J. Combinat. Th., Series A 115, 888–892 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Vesztergombi, K.: On large distances in planar sets. Discrete Math. 67, 191–198 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morić, F., Pach, J. (2013). Remarks on Schur’s Conjecture. In: Akiyama, J., Kano, M., Sakai, T. (eds) Computational Geometry and Graphs. TJJCCGG 2012. Lecture Notes in Computer Science, vol 8296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45281-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45281-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45280-2

  • Online ISBN: 978-3-642-45281-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics