Abstract
Let P be a set of n > d points in ℝd for d ≥ 2. It was conjectured by Schur that the maximum number of (d − 1)-dimensional regular simplices of edge length diam(P), whose every vertex belongs to P, is n. We prove this statement under the condition that any two of the simplices share at least d − 2 vertices. It is left as an open question to decide whether this condition is always satisfied. We also establish upper bounds on the number of all 2- and 3-dimensional simplices induced by a set P ⊂ ℝ3 of n points which satisfy the condition that the lengths of their sides belong to the set of k largest distances determined by P.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dolnikov, V.L.: Some properties of graphs of diameters. Discrete Comput. Geom. 24, 293–299 (2000)
Erdős, P.: On sets of distances of n points. Amer. Math. Monthly 53, 248–250 (1946)
Erdős, P., Pach, J.: Variations on the theme of repeated distances. Combinatorica 10, 261–269 (1990)
Hopf, H., Pannwitz, E.: Aufgabe Nr. 167. Jahresbericht Deutsch. Math.-Verein 43, 114 (1934)
Grünbaum, B.: A proof of Vázsonyi’s conjecture. Bull. Res. Council Israel, Sect. A 6, 77–78 (1956)
Heppes, A.: Beweis einer Vermutung von A. Vázsonyi. Acta Math. Acad. Sci. Hungar. 7, 463–466 (1956)
Kupavskii, A.: Diameter graphs in ℝ4 (manuscript, 2013), http://arxiv.org/abs/1306.3910
Kupitz, Y.S., Martini, H., Wegner, B.: Diameter graphs and full equi-intersectors in classical geometries. In: IV International Conference in “Stoch. Geo., Conv. Bodies, Emp. Meas. & Apps. to Eng. Sci.”, vol. II, Rend. Circ. Mat. Palermo (2) Suppl. No. 70, part II, pp. 65–74 (2002)
Morić, F., Pach, J.: Large simplices determined by finite point sets, Contr. to Alg. and Geom. 54, 45–57 (2013), for a slightly updated version http://www.math.nyu.edu/~pach/publications/sim_short_final.pdf
Schur, Z., Perles, M.A., Martini, H., Kupitz, Y.S.: On the number of maximal regular simplices determined by n points in ℝd. In: Aronov et al. (eds.) Discrete and Computational Geometry, The Goodman-Pollack Festschrift, pp. 767–787. Springer (2003)
Spencer, J., Szemerédi, E., Trotter, W.T.: Unit distances in the Euclidean plane. In: Bollobás, B. (ed.) Graph Theory and Combinatorics, pp. 293–303. Academic Press, London (1984)
Straszewicz, S.: Sur un problème géométrique de P. Erdős. Bull. Acad. Pol. Sci., Cl. III 5, 39–40 (1957)
Swanepoel, K.J.: Unit distances and diameters in Euclidean spaces. Discrete Comput. Geom. 41, 1–27 (2009)
Swanepoel, K.J.: A new proof of Vázsonyi’s conjecture. J. Combinat. Th., Series A 115, 888–892 (2008)
Vesztergombi, K.: On large distances in planar sets. Discrete Math. 67, 191–198 (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Morić, F., Pach, J. (2013). Remarks on Schur’s Conjecture. In: Akiyama, J., Kano, M., Sakai, T. (eds) Computational Geometry and Graphs. TJJCCGG 2012. Lecture Notes in Computer Science, vol 8296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45281-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-45281-9_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-45280-2
Online ISBN: 978-3-642-45281-9
eBook Packages: Computer ScienceComputer Science (R0)