Abstract
For strongly connected, pure n-dimensional regular CW-complexes, we show that evenness (each \((n{-}1)\)-cell is contained in an even number of n-cells) is equivalent to generalizations of both cycle decomposition and traversability.
Similar content being viewed by others
Data availability
None
References
Altshuler, A.: Polyhedral realization in \({\mathbb{R} }^{3}\) of triangulations of the torus and \(2\)-manifolds in cyclic \(4\)-polytopes. Discr. Math 1, 211–238 (1971)
Altshuler, A.: Manifolds in stacked 4-polytopes. J. Combin. Theory Ser. A 10(3), 198–239 (1971)
Bahamian, A., Sajna, M.: Quasi-Eulerian Hypergraphs. Elect. J. Combinat. 24(3), 3.30 (2017)
Basak, B., Swartz, E.: Three-dimensional normal pseudomanifolds with relatively few edges. Adv. Math. 365, 107035 (2020)
Bermond, J.C., Germa, A., Heydemann, M.C., Sotteau, D.: Hypergraph Hamiltoniens. Probleme Combinatoire et theorie des graphes, Orsey 260, 39–43 (1976)
Betke, U., Schulz, C., Wills, J.M.: Zur Zerlegbarkeit von Skeletten. Geometriae Dedicata 5(4), 435–451 (1976)
Biggs, N.L., Lloyd, E.K., Wilson, R.J.: Graph Theory, 1736 to 1936. Clarendon Press, Oxford (1976)
Björner, A.: Posets, regular CW-complexes and Bruhat order. Eur. J. Combin. 5, 7–16 (1984)
Bolker, E.D.: Simplicial geometry and transportation polytopes. Trans. Am. Math. Soc. 217, 121–142 (1976)
Busaryev, O., Cabello, S., Chen, C., Dey, T. K., Wang, Y.: Annotating Simplices with a Homology Basis and Its Applications. Scandinavian Workshop Alg. Theo. 189–200 (2012)
Chung, F., Diaconis, P., Graham, R.: Universal cycles for combinatorial structures, Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida, 1989), Congr. Numer 70-74, Utilitas Math (1990)
Chung, F., Diaconis, P., Graham, R.: Universal cycles for combinatorial structures. Discr. Math. 110, 43–59 (1992)
Coxeter, H.S.M.: Regular skew polyhedra in three and four dimensions and their topological analogoues. Proc. London Math. Soc. 43(Ser. 2), 33–62 (1937)
Cruickshank, J., Jackson, B., Tanigawa, S.: Global Rigidity of Triangulated Manifolds, arXiv:2204.02503v1 [math.CO] 5 Apr (22 pages) (2022)
Dewdney, A.K.: Higher-dimensional tree structures. J. Combin. Theory (B) 17, 160–169 (1974)
Dey, T.K., Edelsbrunner, H., Guha, S.: Computational topology, Computational topology. Contemp. Math. 223, 109–144 (1999)
Duval, A. M., Klivans, C. J., Martin, J. L., Beveridge A. et al.: Simplicial and cellular trees. In: Recent Trends in Combinatorics pp. 713–752
Edmonds, J., Johnson, E.L.: Matching, Euler Tours, and the Chinese Postman. Math. Progr. 5, 88–124 (1973)
Effenberger, F., Kühnel, W.: Hamiltonian submanifolds of regular polytopes. Discrete Comput. Geom. 43, 242–262 (2010)
Euler, L.: Solutio problematis ad geometriam situs pertinentis. Comment. Acad. Sci. I. Petropolitanae 8, 128–140 (1736)
Euler, L.: Solutio problematis ad geometriam situs pertinentis. Opera Omnia Series I-7, 1–10 (1766)
Fogelsanger, A.: The generic rigidity of minimal cycles, Ph.D. Dissertation, Cornell University (1988). See http://www.armadillodanceproject.com/af/cornell/rigidity.htm
Glock, S., Joos, F., Kühn, D., Osthus, D.: Euler tours in hypergraphs. Combinatorica 40, 679–690 (2020)
Glock, S., Kühn, D., Lo, A., Osthus, D.: The existence of designs via iterative absorption: hypergraph \(F\)-designs for arbitrary \(F\). Memoirs Amer. Math. Soc. 284, 131 (2023)
Grünbaum, B.: Graphs, complexes, and polytopes. In: Tutte, W.T. (ed.) Recent Progress in Combinatorics, pp. 85–90. Academic Press, NY (1969)
Hammack, R.H., Kainen, P.C.: Eulerian 2-complexes, Math Magazine, to appear
Hammack, R. H., Kainen, P. C.: Sphere-decompositions of hypercubes. Art Discrete Appl. Math. 3(2), 2.09 (2020)
Hammack, R.H., Kainen, P.C.: Graph bases and commutative diagrams. Graphs Combin. 34(4), 523–534 (2018)
Hammack, R.H., Kainen, P.C.: On \(2\)-skeleta of Platonic polytopes. Bull. Hell. Math. Soc. 62, 94–102 (2018)
Hammack, R.H., Kainen, P.C.: Factorization of Platonic polytopes into canonical spheres. Geombinatorics XXX I(1), 5–9 (2021)
Hammack, R.H., Kainen, P.C.: A new view of hypercube genus. Am. Math. Month. 128(4), 352–359 (2021)
Harary, F.: Graph Theory. Addison-Wesley, Reading, MA (1969)
Hierholzer, C.: Über die Möglichkeit, einen linienzug ohne Wiederholung und ohne Unterbrechnung zu umfahren. Mathematische Ann. 6, 30–32 (1873)
Kainen, P. C.: On \(2\)-skeleta of hypercubes. Art Discrete Appl. Math. 3(2), 2.06 (2020)
Kainen, P.C.: Canonical Sphere Bases for Simplicial and Cubical Complexes. J. Knot Theory Ramif. 32(03), 2350019 (2023)
Kalai, G.: Polytope skeletons and paths, Chap. 19. In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry, 3rd edn. CRC Press, Boca Raton, FL (2017)
Katona, G.Y., Kierstead, H.: Hamiltonian chains in hypergraphs. J. Graph Theo. 30(3), 205–212 (1999)
Keevash, P.: Counting designs. J. Eur. Math. Soc. 20(4), 903–927 (2018). also Existence of designs, arXiv, 2014–2019
Klee, V.: A \(d\)-pseudomanifold with \(f_0\) vertices has at least \(df_0 - (d-1)(d+2) d\)-simplices. Houston J. Math 1(1), 81–86 (1975)
Kühnel, W., Schulz, Ch.: Submanifolds of the cube, In: P. Gritzman, B. Sturmfels, (eds.). Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift, DIMACS, Ser. in Discr. Math. and Theoretical Comp. Sci., Vol. 4, AMS/ACM, pp. 423–432 (1991)
Kühnel, W.: Tight Polyhedral Submanifolds and Tight Triangulations, Lect. Notes in Math., Springer (1996)
Lovász, L., Plummer, M.D.: Matching Theory. N. Holland, Amsterdam (1986)
Massey, W. S.: A Basic Course in Algebraic Topology (1991)
Massey, W. S.: Homology of CW-complexes (Chap. 4), In: Singular Homology Theory, Springer, NY pp. 76–104 (1980)
Mathew, R., Newman, I., Rabinovich, Y., Rajendraprasad, D.: Boundaries of hypertrees, and Hamiltonian cycles in simplicial complexes, arXiv: 1507.04471v2 (2018)
Pippert, R.E., Beineke, L.W.: Characterizations of 2-dimensional trees. In: Chartrand, G., Kapoor, S.F. (eds). The Many Facets of Graph Theory. Springer, Lect. Notes in Math. 110, 263–270 (1969)
Pokorny, F.T., Kragic, D.: Data-driven topological motion planning with persistent cohomology, In: Robotics: Science and Systems, Buchli J.,Hsu D.,Kavraki L.E., Eds., MIT Press. Vol. 11. http://www.roboticsproceedings.org/rss11/p49.pdf (2015)
Sajna, M., Steimle, Y.: Spanning Euler tours and spanning Euler families in hypergraphs with particular vertex cuts. Discr. Math. 341(10), 2808–2819 (2018)
Schulz, Ch.: Mannigfaltigkeiten mit Zellzerlegung im Randkomplex eines konvexen Polytops verallgemeinerte Hamilton-Kreise, dissertation, Bochum (1974)
Sos, V.T., Erdos, P., Brown, W.G.: On the existence of triangulated spheres in \(3\)-graphs and related problems. Per. Math. Hung. 3(3–4), 221–228 (1973)
Spanier, E.H.: Algebraic Topology. McGraw-Hill, New York (1966)
Spreer, J.: Partitioning the triangles of the cross polytope into surfaces. Beitr. Algebra Geom. 53, 473–486 (2012)
Veblen, O.: An application of modular equations in analysis situs. Ann. Math. 14(1), 86–94 (1912)
Wagner, A.: Eulerian Properties of Design Hypergraphs and Hypergraphs with Small Edge Cuts, Ph. D. dissertation, University of Ottawa (2019)
Welsh, D. J. A.: Matroid Theory, LMS Monograph No. 8, Acad. Press, London (1976)
Acknowledgements
We appreciate the advice and criticisms supplied by our referees, who helped us to clarify definitions and proofs. We are grateful for their attentive reading of the paper and for their generosity in providing specific corrections.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supported by Simons Collaboration Grant for Mathematicians 523748.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hammack, R.H., Kainen, P.C. Euler’s Theorem for Regular CW-Complexes. Combinatorica 44, 453–465 (2024). https://doi.org/10.1007/s00493-023-00080-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00493-023-00080-1