Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On the existence of triangulated spheres in 3-graphs, and related problems

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. W. G. Brown, On graphs that do not contain a Thomsen graph,Canad. Math. Bull. 9 (1966) 281–285.

    Google Scholar 

  2. P. Erdős andA. H. Stone, On the structure of linear graphs,Bull. Amer. Math. Soc. 52 (1946), 1087–1091.

    Google Scholar 

  3. P. Erdős andT. Gallai, On maximal paths and circuits of graphs,Acta Math. Acad. Sci. Hungar. 10 (1959), 337–356.

    Google Scholar 

  4. P. Erdős, Extremal problems in graph theory,Theory of Graphs and its Applications (Proc. Sympos. Smolenice, 1963), Prague, 1964, 29–36.

  5. P. Erdős, On extremal problems of graphs and generalized graphs,Israel J. Math. 2 (1964), 183–190.

    Google Scholar 

  6. P. Erdős, A. Rényi andV. T. Sós, On a problem of graph theory,Studia Sci. Math. Hungar. 1 (1966), 215–235.

    Google Scholar 

  7. P. Erdős andM. Simonovits, A limit theorem in graph theory,Studia Sci. Math. Hungar. 1 (1966), 51–57.

    Google Scholar 

  8. P. Erdős andM. Simonovits, Some extremal problems in graph theory,Combinatorial Theory and its Applications (Colloq. Math. J. Bolyai4), Amsterdam-London, 1970, 377–390.

  9. P. Erdős andD. J. Kleitman, On coloring graphs to maximize the proportion of multicolored k-edges,J. Combinatorial Theory 5 (1968) 164–169.

    Google Scholar 

  10. P. Erdős andV. T. Sós, Some remarks on Ramsey's and Turán's theorem,Combinatorial Theory and its Applications (Colloq. Math. J. Bolyai4), Amsterdam-London, 1970, 395–401.

  11. P. Erdős, On some extremal properties onr-graphs,Discrete Math. 1 (1971), 1–6.

    Article  Google Scholar 

  12. M. K. Fort Jr. andG. A. Hedlund, Minimal coverings of pairs by triples,Pacific J. Math. 8 (1958) 709–719.

    Google Scholar 

  13. F. Harary,Graph Theory, Reading, Mass., 1969.

  14. Gy. Katona, T. Nemetz andM. Simonovits, Újabb bizonyítás a Turán-féle gráftételre és megjegyzések bizonyos általánosításaira,Mat. Lapok 15 (1964), 228–238.

    Google Scholar 

  15. T. Kővári, V. T. Sós andP. Turán, On a problem of K. Zarankiewicz,Colloq. Math. 3 (1955), 50–57.

    Google Scholar 

  16. G. Ringel, Extremal problems in the theory of graphs,Theory of Graphs and its Applications (Proc. Sympos. Smolenice, 1963), Prague, 1964, 85–90.

  17. H. Ryser,Combinatorial Mathematics, New York, 1963.

  18. M. Simonovits, Extremal graph problems with conditions,Combinatorial Theory and its Appl. (Colloq. Math. J. Bolyai4), Amsterdam-London, 1970, 999–1011.

  19. J. Singer, A theorem in finite projective geometry and some applications to number theory,Trans. Amer. Math. Soc. 43 (1938), 377–385.

    MathSciNet  Google Scholar 

  20. P. Turán, Egy gráfelméleti szélsőérték-feladatról,Mat. Fiz. Lapok 48 (1941), 436–452.

    Google Scholar 

  21. P. Turán, On the theory of graphs,Colloq. Math. 3 (1954), 19–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To the memory of A. Rényi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sós, V.T., Erdős, P. & Brown, W.G. On the existence of triangulated spheres in 3-graphs, and related problems. Period Math Hung 3, 221–228 (1973). https://doi.org/10.1007/BF02018585

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02018585

Keywords

Navigation