Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Subcellular and tissue localization of NAD kinases from Arabidopsis: compartmentalization of de novo NADP biosynthesis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The de novo biosynthesis of the triphosphopyridine NADP is catalyzed solely by the ubiquitous NAD kinase family. The Arabidopsis (Arabidopsis thaliana) genome contains two genes encoding NAD+ kinases (NADKs), annotated as NADK1, NADK2, and one gene encoding a NADH kinase, NADK3, the latter isoform preferring NADH as a substrate. Here, we examined the tissue-specific and developmental expression patterns of the three NADKs using transgenic plants stably transformed with NADK promoter::glucuronidase (GUS) reporter gene constructs. We observed distinct spatial and temporal patterns of GUS activity among the NADK::GUS plants. All three NADK::GUS transgenes were expressed in reproductive tissue, whereas NADK1::GUS activity was found mainly in the roots, NADK2::GUS in leaves, and NADK3::GUS was restricted primarily to leaf vasculature and lateral root primordia. We also examined the subcellular distribution of the three NADK isoforms using NADK–green fluorescent protein (GFP) fusion proteins expressed transiently in Arabidopsis suspension-cultured cells. NADK1 and NADK2 were found to be localized to the cytosol and plastid stroma, respectively, consistent with previous work, whereas NADK3 localized to the peroxisomal matrix via a novel type 1 peroxisomal targeting signal. The specific subcellular and tissue distribution profiles among the three NADK isoforms and their possible non-overlapping roles in NADP(H) biosynthesis in plant cells are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson JM, Charbonneau H, Jones HP, McCann RO, Cormier MJ (1980) Characterization of the plant nicotinamide adenine dinucleotide kinase activator protein and its identification as calmodulin. Biochemistry 19:3113–3120

    Article  CAS  PubMed  Google Scholar 

  • Berrin JG, Pierrugues O, Brutesco C, Alonso B, Montillet J-L, Roby D, Kazmaier M (2005) Stress induces the expression of AtNADK-1, a gene encoding a NAD(H) kinase in Arabidopsis thaliana. Mol Genet Genomics 273:10–19

    Article  CAS  PubMed  Google Scholar 

  • Bouche N, Yellin A, Snedden WA, Fromm H (2005) Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol 56:435–466

    Article  CAS  PubMed  Google Scholar 

  • Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Goriach J (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510

    Article  CAS  PubMed  Google Scholar 

  • Brocard C, Hartig A (2006) Peroxisome targeting signal 1: is it really a simple tripeptide? Biochim Biophys Acta 1763:1565–1573

    Article  CAS  PubMed  Google Scholar 

  • Bublitz C, Lawler CA (1987) The levels of nicotinamide nucleotides in liver microsomes and their possible significance to the function of hexose phosphate dehydrogenase. Biochem J 245:263–267

    CAS  PubMed  Google Scholar 

  • Chai M-F, Chen Q-J, An R, Chen Y-M, Chen J, Wang X-C (2005) NADK2, an Arabidopsis chloroplastic NAD kinase, plays a vital role in both chlorophyll synthesis and chloroplast protection. Plant Mol Biol 59:553–564

    Article  CAS  PubMed  Google Scholar 

  • Chai M-F, Wei PC, Chen Q-J, An R, Chen J, Yang S, Wang X-C (2006) NADK3, a novel cytoplasmic source of NADPH, is required under conditions of oxidative stress and modulates abscisic acid responses in Arabidopsis. Plant J 47:655–674

    Article  Google Scholar 

  • Clark SM, Di Leo R, Van Cauwenberghe OR, Mullen RT, Shelp BJ (2009) Subcellular localization and expression of multiple tomato γ-aminobutyrate transaminases that utilize both pyruvate and glyoxylate. J Exp Bot 60:3255–3267

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral Dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Connolly E, Campbell NH, Grotz N, Prichard CL, Guerinot ML (2003) Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol 133:1102–1110

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Sandalio LM, Distefano S, Palma JM, Lupiáñez JA, Del Río LA (1998) A dehydrogenase-mediated recycling system of NADPH in plant peroxisomes. Biochem J 330:777–784

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Sandalio LM, Palma JM, Lupiáñez JA, Del Río LA (1999) Peroxisomal NADP-dependent isocitrate dehydrogenase. Characterization and activity regulation during natural senescence. Plant Physiol 121:921–928

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Wang L, Zhang Y, Zhang Y, Deng X, Xue Y (2006) An auxin-inducible F-box protein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. Plant Mol Biol 60:599–615

    Article  CAS  PubMed  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedma H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Grubb CD, Zipp BJ, Ludwig-Muller J, Masuno MN, Molinski TF, Abe S (2004) Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J 40:893–908

    Article  CAS  PubMed  Google Scholar 

  • Harding SA, Roberts DM (1998) Incompatible pathogen infection results in enhanced reactive oxygen and cell death responses in transgenic tobacco expressing a hyperactive mutant calmodulin. Planta 206:253–258

    Article  CAS  Google Scholar 

  • Harding SA, Oh SH, Roberts DM (1997) Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species. EMBO J 16:1137–1144

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto T (2006) Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid. Plant Physiol 141:851–857

    Article  PubMed  Google Scholar 

  • Heber U (1974) Metabolite exchange between chloroplasts and cytoplasm. Annu Rev Plant Physiol 25:393–421

    Article  CAS  Google Scholar 

  • Hemerly AS, Ferreira P, Engler JD, Vanmontagu M, Engler G, Inze D (1993) cdc2a expression in Arabidopsis is linked with competence for cell-division. Plant Cell 5:1711–1723

    Article  CAS  PubMed  Google Scholar 

  • Huppe HC, Vanlerberghe GC, Turpin DH (1992) Evidence for activation of the oxidative pentose phosphate pathway during photosynthetic assimilation of NO3 but not NH4 + by a green alga. Plant Physiol 100:2096–2099

    Article  CAS  PubMed  Google Scholar 

  • Hutchings D, Rawsthorne S, Emes MJ (2004) Fatty acid synthesis and the oxidative pentose phosphate pathway in developing embryos of oilseed rape (Brassica napus L.). J Exp Bot 56:577–585

    Article  PubMed  Google Scholar 

  • Kho R, Newman JV, Jack RM, Villar HO, Hansen MR (2003) Genome-wide profile of oxidoreductases in viruses, prokaryotes, and eukaryotes. J Proteome Res 2:626–632

    Article  CAS  PubMed  Google Scholar 

  • Kremier G, Surek B, Heimann K, Burchert M, Lukow L, Holtum JAM, Woodrow IE, Melkonian M, Latzko E (1987) Calcium metabolism in chloroplasts and protoplasts. In: Biggins J (ed) Progress in photosynthesis research: Proceedings of the 7th international congress on photosynthesis. M Nijhoff Publishers, Boston, pp 345–346

  • Kunce CM, Trelease RN, Turley RB (1988) Purification and biosynthesis of cottonseed (Gossypium hirsutum L.) catalase. Biochem J 251:147–155

    CAS  PubMed  Google Scholar 

  • Lee MS, Mullen RT, Trealease RN (1997) Oilseed isocitrate lyases lacking their essential type 1 peroxisomal targeting signal are piggybacked to glyoxysomes. Plant Cell 9:185–197

    Article  CAS  PubMed  Google Scholar 

  • Lingard MJ, Gidda SK, Bingham S, Rothstein SJ, Mullen RT, Trelease RN (2008) Arabidopsis PEROXIN11c-e, FISSION1b, and DYNAMIN-RELATED PROTEIN3A cooperate in cell cycle-associated replication of peroxisomes. Plant Cell 20:1567–1585

    Article  CAS  PubMed  Google Scholar 

  • Lisenbee CS, Karnik SK, Trelease RN (2003) Overexpression and mislocalization of a tail-anchored GFP redefines the identity of peroxisomal ER. Traffic 4:491–501

    Article  CAS  PubMed  Google Scholar 

  • Luethy MH, Horak A, Elthon TE (1993) Monoclonal antibodies to the α- and β-subunits of the plant mitochondrial F1-ATPase. Plant Physiol 101:931–937

    CAS  PubMed  Google Scholar 

  • Ma C, Reumann S (2008) Improved prediction of peroxisomal PTS1 proteins from genome sequences based on experimental subcellular targeting analyses as exemplified for protein kinases from Arabidopsis. J Exp Bot 59:3767–3779

    Article  CAS  PubMed  Google Scholar 

  • Miyagi H, Kawai S, Murata K (2009) Two sources of mitochondrial NADPH in the yeast Saccharomyces cerevisiae. J Biol Chem 284:7553–7560

    Article  CAS  PubMed  Google Scholar 

  • Mullen RT (2002) Targeting and import of matrix proteins into peroxisomes. In: Baker A, Graham I (eds) Plant peroxisomes: biochemistry, cell biology and biotechnological applications. Kluwer Publishers, Dordrecht, pp 339–385

  • Muto S, Miyachi S, Usuda H, Edwards GE, Bassham J (1981) Light induced conversion of nicotinamide adenine dinucleotide to nicotinamide adenine dinucleotide phosphate in higher plant leaves. Plant Physiol 68:324–328

    Article  CAS  PubMed  Google Scholar 

  • Nagpal P, Ellis CM, Weber H, Ploense S, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118

    Article  CAS  PubMed  Google Scholar 

  • Navas P, Minnifield N, Sun I, Morre DJ (1986) NADP phosphatase as a marker in free-flow electrophoretic separations for cisternae of the Golgi appartus midregion. Biochim Biophys Acta 881:1–9

    CAS  PubMed  Google Scholar 

  • Noctor G (2006) Metabolic signalling in defence and stress, the central roles of soluble redox couples. Plant Cell Environ 29:409–425

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Queval G, Gakière B (2006) NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. J Exp Bot 57:1603–1620

    Article  CAS  PubMed  Google Scholar 

  • Nyathi Y, Baker A (2006) Plant peroxisomes as a source of signalling molecules. Biochim Biophys Acta 1763:1478–1495

    Article  CAS  PubMed  Google Scholar 

  • Outten CE, Culotta VC (2003) A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. EMBO J 22:2015–2024

    Article  CAS  PubMed  Google Scholar 

  • Pollak N, Niere M, Ziegler M (2007) NAD Kinase levels control the NADPH concentration in human cells. J Biol Chem 282:33562–33571

    Article  CAS  PubMed  Google Scholar 

  • Pugin A, Frachisse J-M, Tavernier E, Bligny R, Gout E, Douce R, Guern J (1997) Early events induced by the elicitor cryptogein in tobacco cells: involvement of a plasma membrane NADPH oxidase and activation of glycolysis and the pentose phosphate pathway. Plant Cell 9:2077–2091

    Article  CAS  PubMed  Google Scholar 

  • Reumann S, Maier E, Heldt HW, Benz R (1998) Permeability properties of the porin of spinach leaf peroxisomes. Eur J Biochem 251:359–366

    Article  CAS  PubMed  Google Scholar 

  • Reumann S, Ma C, Lemke S, Babujee L (2004) AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes. Plant Physiol 136:2587–2608

    Article  CAS  PubMed  Google Scholar 

  • Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson CG, Weber AP, Olsen LJ, Hu J (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150:125–143

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Simon P, Dieter P, Bonzon H, Marme D (1982) Calmodulin-dependent and independent NAD kinase activities from cytoplasmic and chloroplastic fractions of spinach (Spinacia oleracea L.). Plant Cell Rep 1:119–122

    Article  CAS  Google Scholar 

  • Simon P, Bonzon M, Greppin H, Marme D (1984) Subchloroplastic localization of NAD kinase activity, evidence for a Ca2+, calmodulin-dependent activity at the envelope and for a Ca2+, calmodulin-independent activity in the stroma of pea chloroplasts. FEBS Lett 167:332–338

    Article  CAS  Google Scholar 

  • Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    Article  CAS  PubMed  Google Scholar 

  • Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA 97:10625–10630

    Article  CAS  PubMed  Google Scholar 

  • Strand MK, Stuart GR, Longley MJ, Graziewicz MA, Dominick OC, Copeland WC (2003) POS5 gene of Saccharomyces cerevisiae encodes a mitochondrial NADH kinase required for stability of mitochondrial DNA. Eukaryot Cell 2:809–820

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Watanbe A, Tanaka A, Hashida S, Kawai-Yamada M, Sonoike K, Uchimaya H (2006) Chloroplast NAD kinase is essential for energy transduction through the Xanthophyll cycle in photosynthesis. Plant Cell Physiol 47:1678–1682

    Article  CAS  PubMed  Google Scholar 

  • Todisco S, Agrimi G, Castegna A, Palmieri F (2006) Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae. J Biol Chem 281:1524–1531

    Article  CAS  PubMed  Google Scholar 

  • Turner WL, Waller JC, Vanderbeld BJ, Snedden WA (2004) Cloning and characterization of two NAD kinases from Arabidopsis: identification of a calmodulin binding isoform. Plant Physiol 125:1243–1255

    Article  Google Scholar 

  • Turner WL, Waller JC, Snedden WA (2005) Identification, molecular cloning and functional characterization of a novel NADH kinase from Arabidopsis thaliana. Biochem J 385:217–223

    Article  CAS  PubMed  Google Scholar 

  • Wheeler MCG, Tronconi MA, Drincovich MF, Andreo CS, Flugge UI, Maurino VG (2005) A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis. Plant Physiol 139:39–51

    Article  CAS  PubMed  Google Scholar 

  • Wise DD, Shear JB (2004) Circadian tracking of nicotinamide cofactor levels in an immortalized suprachiasmatic nucleus cell line. Neuroscience 128:263–268

    Article  CAS  PubMed  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2000) Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein. Biochem Biophys Res Commun 275:601–607

    Article  CAS  PubMed  Google Scholar 

  • Zolman BK, Martinez N, Millius A, Adham AR, Bartel B (2008) Identification and characterization of Arabidopsis indole-3-butyric acid response mutants defective in novel peroxisomal enzymes. Genetics 180:237–251

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Frederica Brandizzi for the kind gift of the pVK18 binary vector. This work was supported by grants from the National Science and Engineering Council of Canada (NSERC) to W.A.S. and R.T.M. J.C.W. was funded through a Premier’s Research Excellence Award (recipient, W.S.). P. K. Dhanoa was funded by an Ontario Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne A. Snedden.

Additional information

In this article, NAD(P) is used to denote NAD or NADP without regard to its reduction status or in cases where the distinction between the two forms is unnecessary (e.g. NADP/NAD ratios). NAD(P)+ and NAD(P)H are used to make specific reference to the oxidized forms and reduced forms, respectively.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 749 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waller, J.C., Dhanoa, P.K., Schumann, U. et al. Subcellular and tissue localization of NAD kinases from Arabidopsis: compartmentalization of de novo NADP biosynthesis. Planta 231, 305–317 (2010). https://doi.org/10.1007/s00425-009-1047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-1047-7

Keywords

Navigation