Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Extremal curves and surfaces in symmetric tensor fields

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The visualization of symmetric second-order tensor fields in two or three dimensions is still a challenging task, particularly if global structures of the data are desired. One approach is tensor field topology which provides structures characterizing the behavior of the eigenvector fields. Another widely used approach is analyzing tensor fields by means of scalar invariants, i.e., quantities invariant with respect to changes of the coordinate system. In this case, the selection of the relevant invariants might be difficult. Thus, we propose an approach which analyzes the complete invariant part of the tensor. We define extremal points for tensor fields in a mathematically rigorous way, which form curves for two-dimensional and surfaces for three-dimensional tensor fields. We propose a way to compute extremal curves or surfaces from a suitable set of two or three invariants, respectively. We also show that commonly used sets of invariants lead to the same extremal points. Consequently, extremal points contain minima and maxima of most invariants used in tensor field analysis and they are linked to the tensor field topology by containing the degenerate points. Moreover, we show that each extremal point is an extremum or a saddle of a certain invariant. The method is demonstrated on synthetic datasets as well as on stress tensor fields from structure simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bachthaler, S., Weiskopf, D.: Continuous scatterplots. IEEE Trans. Vis. Comput. Graph. 14(6), 1428–1435 (2008)

    Article  Google Scholar 

  2. Bhatia, H., Wang, B., Norgard, G., Pascucci, V., Bremer, P.T.: Local, smooth, and consistent Jacobi set simplification. Comput. Geom. 48(4), 311–332 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Criscione, J.C., Humphrey, J.D., Douglas, A.S., Hunter, W.C.: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids 48(12), 2445–2465 (2000)

    Article  MATH  Google Scholar 

  4. Delmarcelle, T., Hesselink, L.: The topology of symmetric, second-order tensor fields. In: Proceedings of the Conference on Visualization’94, IEEE Computer Society Press, pp. 140–147 (1994)

  5. Dick, C., Georgii, J., Burgkart, R., Westermann, R.: Stress tensor field visualization for implant planning in orthopedics. IEEE Trans. Vis. Comput. Graph. 15(6), 1399–1406 (2009)

    Article  Google Scholar 

  6. Dickinson, R.R.: A unified approach to the design of visualization software for the analysis of field problems. SPIE Proc. 1083, 173–180 (1989)

    Article  Google Scholar 

  7. Do Carmo, M.P., Do Carmo, M.P.: Differential Geometry of Curves and Surfaces, vol. 2. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  8. Edelsbrunner, H., Harer, J.: Jacobi sets of multiple Morse functions. In: Foundations of Computational Mathematics, Minneapolis, pp. 37–57 (2002)

  9. Ennis, D.B., Kindlmann, G.: Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images. Magn. Resonan. Med. 55(1), 136–146 (2006)

    Article  Google Scholar 

  10. Hashash, Y., Yao, J.I., Wotring, D.C., et al.: Glyph and hyperstreamline representation of stress and strain tensors and material constitutive response. Int. J. Numer. Anal. Methods Geomech. 27(7), 603–626 (2003)

    Article  MATH  Google Scholar 

  11. Hlawitschka, M., Scheuermann, G., Hamann, B.: Interactive glyph placement for tensor fields. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Paragios, N., Tanveer, S-M., Ju, T., Liu, Z., Coquillart, S., Cruz-Neira, C., Müller, T., Malzbender, T. (eds.) Advances in Visual Computing, pp. 331–340. Springer, Berlin, Heidelberg (2007)

  12. Hotz, I., Feng, L., Hagen, H., Hamann, B., Joy, K., Jeremic, B.: Physically based methods for tensor field visualization. In: Visualization, pp. 123–130. IEEE (2004)

  13. Jeremić, B., Scheuermann, G., Frey, J., Yang, Z., Hamann, B., Joy, K.I., Hagen, H.: Tensor visualizations in computational geomechanics. Int. J. Numer. Anal. Methods Geomech. 26(10), 925–944 (2002)

    Article  MATH  Google Scholar 

  14. Kindlmann, G., Ennis, D.B., Whitaker, R.T., Westin, C.F.: Diffusion tensor analysis with invariant gradients and rotation tangents. IEEE Trans. Med. Imaging 26(11), 1483–1499 (2007)

    Article  Google Scholar 

  15. Kindlmann, G., Westin, C.f: Diffusion tensor visualization with glyph packing. IEEE Trans. Vis. Comput. Graph. 12(5), 1329–1336 (2006). doi:10.1109/TVCG.2006.134

    Article  Google Scholar 

  16. Kratz, A., Auer, C., Stommel, M., Hotz, I.: Visualization and analysis of second-order tensors: moving beyond the symmetric positive-definite case. Comput. Graph. Forum State Art Rep. 32(1), 49–74 (2013)

    Article  Google Scholar 

  17. Kratz, A., Kettlitz, N., Hotz, I.: Particle-based anisotropic sampling for two-dimensional tensor field visualization. In: Proceedings of Vision, Modeling, and Visualization. The Eurographics Association (2011)

  18. Kratz, A., Schoeneich, M., Zobel, V., Hotz, I., Burgeth, B., Scheuermann, G., Stommel, M.: Tensor visualization driven mechanical component design. In: Proceedings of PacificVis. IEEE (2014)

  19. Lehmann, D.J., Theisel, H.: Discontinuities in continuous scatter plots. IEEE Trans. Vis. Comput. Graph. 16(6), 1291–1300 (2010). doi:10.1109/TVCG.2010.146

    Article  Google Scholar 

  20. Magnus, J.R.: On differentiating eigenvalues and eigenvectors. Econom. Theory 1(02), 179–191 (1985)

    Article  Google Scholar 

  21. Margulies, D.S., Böttger, J., Watanabe, A., Gorgolewski, K.J.: Visualizing the human connectome. NeuroImage 80, 445–461 (2013)

    Article  Google Scholar 

  22. Palacios, J., Yeh, H., Wang, W., Zhang, Y., Laramee, R.S., Sharma, R., Schultz, T., Zhang, E.: Feature surfaces in symmetric tensor fields based on eigenvalue manifold. IEEE Trans. Vis. Comput. Graph. 22(3), 1248–1260 (2016). doi:10.1109/TVCG.2015.2484343

    Article  Google Scholar 

  23. Schultz, T., Kindlmann, G.L.: Superquadric glyphs for symmetric second-order tensors. IEEE Trans. Vis. Comput. Graph. 16(6), 1595–1604 (2010)

    Article  Google Scholar 

  24. Suthambhara, N., Natarajan, V.: Simplification of Jacobi sets. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds.) Topological Methods in Data Analysis and Visualization, pp. 91–102. Springer, Berlin, Heidelberg (2011)

  25. Tricoche, X., Kindlmann, G., Westin, C.F.: Invariant crease lines for topological and structural analysis of tensor fields. IEEE Trans. Vis. Comput. Graph. 14(6), 1627–1634 (2008)

    Article  Google Scholar 

  26. Tricoche, X., Scheuermann, G.: Topology simplification of symmetric, second-order 2D tensor fields. In: Brunnett, G., Hamann, B., Müller, H., Linsen, L. (eds.) Geometric Modeling for Scientific Visualization, pp. 275–291. Springer, Berlin, Heidelberg (2004)

  27. Tricoche, X., Scheuermann, G., Hagen, H.: Tensor topology tracking: a visualization method for time-dependent 2D symmetric tensor fields. Comput. Graph. Forum 20, 461–470 (2001)

    Article  MATH  Google Scholar 

  28. von Mises, R.: Mechanik der festen Körper im plastisch-deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1913, 582–592 (1913)

    MATH  Google Scholar 

  29. Zheng, X., Pang, A.: Topological lines in 3D tensor fields. In: Visualization, pp. 313–320. IEEE (2004)

  30. Zheng, X., Parlett, B., Pang, A.: Topological structures of 3D tensor fields. In: Visualization, 2005. VIS 05, pp. 551–558. IEEE (2005). doi:10.1109/VISUAL.2005.1532841

  31. Zheng, X., Parlett, B.N., Pang, A.: Topological lines in 3D tensor fields and discriminant hessian factorization. IEEE Trans. Vis. Comput. Graph. 11(4), 395–407 (2005). doi:10.1109/TVCG.2005.67

    Article  Google Scholar 

  32. Zobel, V., Stommel, M., Scheuermann, G.: Feature-based tensor field visualization for fiber reinforced polymers. In: IEEE Scientific Visualization Conference (SciVis), pp. 49–56 (2015). doi:10.1109/SciVis.2015.7429491

Download references

Acknowledgements

The authors would like to thank Jannik Nahrgang and Markus Stommel from TU Dortmund University for providing the tensile bar datasets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Zobel.

Appendix

Appendix

The rows of the Jacobian matrices of \(\bar{I}\), \(\bar{K}\), \(\bar{R}\) are the gradients of the respective invariant functions, i.e.,

$$\begin{aligned}&J\bar{I} = \left[ \begin{array}{ccc} \nabla \bar{I}_1&\nabla \bar{I}_2&\nabla \bar{I}_3 \end{array} \right] ^\top , \\&J\bar{K} = \left[ \begin{array}{ccc} \nabla \bar{K}_1&\nabla \bar{K}_2&\nabla \bar{K}_3 \end{array} \right] ^\top ,\\&J\bar{R} = \left[ \begin{array}{ccc} \nabla \bar{R}_1&\nabla \bar{R}_2&\nabla \bar{R}_3 \end{array} \right] ^\top . \end{aligned}$$

The gradients of the invariant functions depending on the eigenvalues \(\lambda _1, \lambda _2, \lambda _3\) are given by

$$\begin{aligned} \nabla \bar{I}_1= & {} \nabla \bar{K}_1 = \left[ \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right] , \quad \nabla \bar{I}_2 = \left[ \begin{array}{c} \lambda _2 + \lambda _3 \\ \lambda _1 + \lambda _3 \\ \lambda _1 + \lambda _2 \end{array} \right] ,\\ \nabla \bar{I}_3= & {} \left[ \begin{array}{c} \lambda _2 \lambda _3 \\ \lambda _1 \lambda _3 \\ \lambda _1 \lambda _2 \\ \end{array} \right] , \quad \nabla \bar{K}_2 = \left[ \begin{array}{c} \frac{1}{ \Vert \tilde{T} \Vert } \tilde{\lambda }_1 \\ \frac{1}{ \Vert \tilde{T} \Vert } \tilde{\lambda }_2 \\ \frac{1}{ \Vert \tilde{T} \Vert } \tilde{\lambda }_3 \\ \end{array} \right] ,\\ \nabla \bar{R}_2= & {} \left[ \begin{array}{c} \frac{1}{\sqrt{6}} \Vert T \Vert ^{-3} \Vert \tilde{T} \Vert ^{-1} ( {{\mathrm{tr}}}T ) (\lambda _1 \lambda _2 + \lambda _1 \lambda _3 - \lambda _2^2 - \lambda _3^3 ) \\ \frac{1}{\sqrt{6}} \Vert T \Vert ^{-3} \Vert \tilde{T} \Vert ^{-1} ( {{\mathrm{tr}}}T ) (\lambda _2 \lambda _1 + \lambda _2 \lambda _3 - \lambda _1^2 - \lambda _3^3 ) \\ \frac{1}{\sqrt{6}} \Vert T \Vert ^{-3} \Vert \tilde{T} \Vert ^{-1} ( {{\mathrm{tr}}}T ) (\lambda _3 \lambda _1 + \lambda _3 \lambda _2 - \lambda _1^2 - \lambda _2^3 ) \end{array} \right] ,\\ \nabla \bar{K}_3= & {} \nabla \bar{R}_3 = \left[ \begin{array}{c} \sqrt{6} \Vert \tilde{T} \Vert ^{-5} (\lambda _2 - \lambda _3)^2(\lambda _1 - \lambda _2)(\lambda _1 - \lambda _3) \\ \sqrt{6} \Vert \tilde{T} \Vert ^{-5} (\lambda _1 - \lambda _3)^2(\lambda _2 - \lambda _1)(\lambda _2 - \lambda _3) \\ \sqrt{6} \Vert \tilde{T} \Vert ^{-5} (\lambda _1 - \lambda _2)^2(\lambda _3 - \lambda _1)(\lambda _3 - \lambda _2) \end{array} \right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zobel, V., Scheuermann, G. Extremal curves and surfaces in symmetric tensor fields. Vis Comput 34, 1427–1442 (2018). https://doi.org/10.1007/s00371-017-1450-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1450-1

Keywords

Navigation