Nothing Special   »   [go: up one dir, main page]

Skip to main content

Visualization of Two-Dimensional Symmetric Positive Definite Tensor Fields Using the Heat Kernel Signature

  • Conference paper
  • First Online:
Topological Methods in Data Analysis and Visualization III

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

We propose a method for visualizing two-dimensional symmetric positive definite tensor fields using the Heat Kernel Signature (HKS). The HKS is derived from the heat kernel and was originally introduced as an isometry invariant shape signature. Each positive definite tensor field defines a Riemannian manifold by considering the tensor field as a Riemannian metric. On this Riemmanian manifold we can apply the definition of the HKS. The resulting scalar quantity is used for the visualization of tensor fields. The HKS is closely related to the Gaussian curvature of the Riemannian manifold and the time parameter of the heat kernel allows a multiscale analysis in a natural way. In this way, the HKS represents field related scale space properties, enabling a level of detail analysis of tensor fields. This makes the HKS an interesting new scalar quantity for tensor fields, which differs significantly from usual tensor invariants like the trace or the determinant. A method for visualization and a numerical realization of the HKS for tensor fields is proposed in this chapter. To validate the approach we apply it to some illustrating simple examples as isolated critical points and to a medical diffusion tensor data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Bronstein, I. Kokkinos, Scale-invariant heat kernel signatures for non-rigid shape recognition, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010, San Francisco (IEEE, 2010), pp. 1704–1711

    Google Scholar 

  2. T. Delmarcelle, L. Hesselink, The topology of symmetric, second-order tensor fields, in Proceedings of the Conference on Visualization’94, Washington, DC (IEEE, 1994), pp. 140–147

    Google Scholar 

  3. M. Desbrun, E. Kanso, Y. Tong, Discrete differential forms for computational modeling, in SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses (ACM, New York, 2006), pp. 39–54. doi:http://doi.acm.org/10.1145/1185657.1185665

  4. T. Dey, K. Li, C. Luo, P. Ranjan, I. Safa, Y. Wang, Persistent heat signature for pose-oblivious matching of incomplete models, in Computer Graphics Forum, vol. 29 (Wiley Online Library, 2010), pp. 1545–1554

    Google Scholar 

  5. M. Ovsjanikov, A. Bronstein, M. Bronstein, L. Guibas, Shape google: a computer vision approach to isometry invariant shape retrieval, in IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), 2009, Kyoto (IEEE, 2009), pp. 320–327

    Google Scholar 

  6. D. Raviv, M. Bronstein, A. Bronstein, R. Kimmel, Volumetric heat kernel signatures, in Proceedings of the ACM Workshop on 3D Object Retrieval, Firenze (ACM, 2010), pp. 39–44

    Google Scholar 

  7. S. Rosenberg, The Laplacian on a Riemannian Manifold: An Introduction to Analysis on Manifolds (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  8. J. Sun, M. Ovsjanikov, L. Guibas, A concise and provably informative multi-scale signature based on heat diffusion, in Proceedings of Eurographics Symposium on Geometry Processing (SGP), Berlin, 2009

    Google Scholar 

  9. H. Zhang, O. van Kaick, R. Dyer, Spectral mesh processing, in Computer Graphics Forum (Wiley, 2010)

    Google Scholar 

Download references

Acknowledgements

This research is partially supported by the TOPOSYS project FP7-ICT-318493-STREP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Zobel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zobel, V., Reininghaus, J., Hotz, I. (2014). Visualization of Two-Dimensional Symmetric Positive Definite Tensor Fields Using the Heat Kernel Signature. In: Bremer, PT., Hotz, I., Pascucci, V., Peikert, R. (eds) Topological Methods in Data Analysis and Visualization III. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-04099-8_16

Download citation

Publish with us

Policies and ethics