Abstract
We propose a method for visualizing two-dimensional symmetric positive definite tensor fields using the Heat Kernel Signature (HKS). The HKS is derived from the heat kernel and was originally introduced as an isometry invariant shape signature. Each positive definite tensor field defines a Riemannian manifold by considering the tensor field as a Riemannian metric. On this Riemmanian manifold we can apply the definition of the HKS. The resulting scalar quantity is used for the visualization of tensor fields. The HKS is closely related to the Gaussian curvature of the Riemannian manifold and the time parameter of the heat kernel allows a multiscale analysis in a natural way. In this way, the HKS represents field related scale space properties, enabling a level of detail analysis of tensor fields. This makes the HKS an interesting new scalar quantity for tensor fields, which differs significantly from usual tensor invariants like the trace or the determinant. A method for visualization and a numerical realization of the HKS for tensor fields is proposed in this chapter. To validate the approach we apply it to some illustrating simple examples as isolated critical points and to a medical diffusion tensor data set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
M. Bronstein, I. Kokkinos, Scale-invariant heat kernel signatures for non-rigid shape recognition, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010, San Francisco (IEEE, 2010), pp. 1704–1711
T. Delmarcelle, L. Hesselink, The topology of symmetric, second-order tensor fields, in Proceedings of the Conference on Visualization’94, Washington, DC (IEEE, 1994), pp. 140–147
M. Desbrun, E. Kanso, Y. Tong, Discrete differential forms for computational modeling, in SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses (ACM, New York, 2006), pp. 39–54. doi:http://doi.acm.org/10.1145/1185657.1185665
T. Dey, K. Li, C. Luo, P. Ranjan, I. Safa, Y. Wang, Persistent heat signature for pose-oblivious matching of incomplete models, in Computer Graphics Forum, vol. 29 (Wiley Online Library, 2010), pp. 1545–1554
M. Ovsjanikov, A. Bronstein, M. Bronstein, L. Guibas, Shape google: a computer vision approach to isometry invariant shape retrieval, in IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), 2009, Kyoto (IEEE, 2009), pp. 320–327
D. Raviv, M. Bronstein, A. Bronstein, R. Kimmel, Volumetric heat kernel signatures, in Proceedings of the ACM Workshop on 3D Object Retrieval, Firenze (ACM, 2010), pp. 39–44
S. Rosenberg, The Laplacian on a Riemannian Manifold: An Introduction to Analysis on Manifolds (Cambridge University Press, Cambridge, 1997)
J. Sun, M. Ovsjanikov, L. Guibas, A concise and provably informative multi-scale signature based on heat diffusion, in Proceedings of Eurographics Symposium on Geometry Processing (SGP), Berlin, 2009
H. Zhang, O. van Kaick, R. Dyer, Spectral mesh processing, in Computer Graphics Forum (Wiley, 2010)
Acknowledgements
This research is partially supported by the TOPOSYS project FP7-ICT-318493-STREP.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Zobel, V., Reininghaus, J., Hotz, I. (2014). Visualization of Two-Dimensional Symmetric Positive Definite Tensor Fields Using the Heat Kernel Signature. In: Bremer, PT., Hotz, I., Pascucci, V., Peikert, R. (eds) Topological Methods in Data Analysis and Visualization III. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-04099-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-04099-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-04098-1
Online ISBN: 978-3-319-04099-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)