Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Thermal post-buckling analysis of graded sandwich curved structures under variable thermal loadings

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In the present research, finite element solutions of thermal post-buckling load-bearing strength of functionally graded (FG) sandwich shell structures are reported by adopting a higher-order shear deformation type kinematics. For the numerical calculation, nine nodes are considered for each element. A specialized MATLAB code is developed incorporating the present mathematical model to evaluate the numerical buckling temperature. The Green–Lagrange nonlinear strain is adopted for the formulation of the sandwich structure. The eigenvalue equation of the FG sandwich structure is solved to predict the post-buckling temperature values of the structure. Moreover, three kinds of temperature distributions across the panel thickness are assumed, viz., uniform, linear and nonlinear. In addition, the properties are described using the power law distributions. The numerical solutions are first validated and, subsequently, the impact of alterations of structural parameters, viz., the curvature ratios, core–face thickness ratios, support conditions and power law index (nZ) including the amplitude ratio on the thermal post-buckling response of FG sandwich curved panels have been studied in details. The investigation reveals different interesting outcomes, which may help for future references for the analysis and design of the graded sandwich structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Liew KM, Yang J, Kitipornchai S (2003) Post-buckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading. Int J Solids Struct 40:3869–3892. https://doi.org/10.1016/S0020-7683(03)00096-9

    Article  MATH  Google Scholar 

  2. Liew KM, Yang J, Kitipornchai S (2004) Thermal post-buckling of laminated plates comprising functionally graded materials with temperature-dependent properties. J Appl Mech ASME 71:839–850. https://doi.org/10.1115/1.1795220

    Article  MATH  Google Scholar 

  3. Li Q, Iu VP, Kou KP (2008) Three-dimensional vibration analysis of functionally graded material sandwich plates. J Sound Vib 311(1):498–515. https://doi.org/10.1016/j.jsv.2007.09.018

    Article  Google Scholar 

  4. Yang J, Shen HS (2003) Non-linear analysis of functionally graded plates under transverse and in-plane loads. Int J Nonlinear Mech 38:467–482. https://doi.org/10.1016/S0020-7462(01)00070-1

    Article  MATH  Google Scholar 

  5. Zenkour AM (2005) A comprehensive analysis of functionally graded sandwich plates: part 1—deflection and stresses. Int J Solids Struct 42(18):5224–5258. https://doi.org/10.1016/j.ijsolstr.2005.02.015

    Article  MATH  Google Scholar 

  6. Zenkour AM (2005) A comprehensive analysis of functionally graded sandwich plates: part 2—buckling and free vibration. Int J Solids Struct 42(18):5224–5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016

    Article  MATH  Google Scholar 

  7. Zenkour AM, Allam MNM, Sobhy M (2010) Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak’s elastic foundations. Acta Mech 212(3–4):233–252. https://doi.org/10.1007/s00707-009-0252-6

    Article  MATH  Google Scholar 

  8. Kim J, Żur KK, Reddy JN (2019) Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates. Compos Struct 209:879–888. https://doi.org/10.1016/j.compstruct.2018.11.023

    Article  Google Scholar 

  9. Thai HT, Nguyen TK, Vo TP, Lee J (2014) Analysis of functionally graded sandwich plates using a new first-order shear deformation theory. Eur J Mech A Solids 45:211–225. https://doi.org/10.1016/j.euromechsol.2013.12.008

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghannadpour SAM, Ovesy HR, Nassirnia M (2012) Buckling analysis of functionally graded plates under thermal loadings using the finite strip method. Comput Struct 108(109):93–99. https://doi.org/10.1016/j.compstruc.2012.02.011

    Article  Google Scholar 

  11. Sobhani E, Arbabian A, Civalek Ö et al (2021) The free vibration analysis of hybrid porous nanocomposite joined hemispherical–cylindrical–conical shells. Eng Comput. https://doi.org/10.1007/s00366-021-01453-0 ((ISSN: 1435–5663))

    Article  Google Scholar 

  12. Hajjd L, Avcar M (2021) Free vibration analysis of FG porous sandwich plates under various boundary conditions. J Appl Comput Mech 7(2):505–519. https://doi.org/10.22055/jacm.2020.35328.2628

    Article  Google Scholar 

  13. Ramos A, Mantari JL, Pagani A, Carrera E (2016) Refined theories based on non-polynomial kinematics for the thermoelastic analysis of functionally graded plates. J Therm Stress 39(7):835–853. https://doi.org/10.1080/01495739.2016.1189771

    Article  Google Scholar 

  14. Carrera E, Pagani A, Valvano S (2017) Shell elements with through-the-thickness variable kinematics for the analysis of laminated composite and sandwich structures. Compos B 111:294–314. https://doi.org/10.1016/j.compositesb.2016.12.001

    Article  Google Scholar 

  15. Carrera E, Pagani A, Augello R, Wu B (2020) Popular benchmarks of nonlinear shell analysis solved by 1D and 2D CUF-based finite elements. Mech Adv Mater Struct 27(13):1098–1109. https://doi.org/10.1080/15376494.2020.1728450

    Article  Google Scholar 

  16. Sobhy M (2013) Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Compos Struct 99:76–87. https://doi.org/10.1016/j.compstruct.2012.11.018

    Article  Google Scholar 

  17. Topal U (2012) Thermal buckling load optimization of laminated plates with different intermediate line supports. Steel Compos Struct 13(3):207–223. https://doi.org/10.12989/scs.2012.13.3.207

    Article  Google Scholar 

  18. Topal U (2013) Application of a new extended layerwise approach to thermal buckling load optimization of laminated composite plates. Steel Compos Struct 14:283–293. https://doi.org/10.12989/scs.2013.14.3.283

    Article  Google Scholar 

  19. Woo J, Meguid SA, Stranart JC, Liew KM (2005) Thermo mechanical post-buckling analysis of moderately thick functionally graded plates and shallow shells. Int J Mech Sci 47:1147–1171. https://doi.org/10.12989/sem.2015.56.1.085

    Article  MATH  Google Scholar 

  20. Meziane MAA, Abdelaziz HH, Tounsi A (2014) An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions. J Sandw Struct Mater 16(3):293–318. https://doi.org/10.1177/1099636214526852

    Article  Google Scholar 

  21. Zhang J, Ullah S, Gao Y, Avcar M, Civalek O (2020) Analysis of orthotropic plates by the two-dimensional generalized FIT method. Comput Concrete 26(5):421–427. https://doi.org/10.12989/cac.2020.26.5.421

    Article  Google Scholar 

  22. Allahkarami F (2020) Dynamic buckling of functionally graded multilayer grapheme nanocomposite annular plate under different boundary conditions in thermal environment. Eng Comput. https://doi.org/10.1007/s00366-020-01169-7

    Article  Google Scholar 

  23. Wu B, Pagani A, Filippi M, Chen WQ, Carreraal E (2019) Large-deflection and post-buckling analyses of isotropic rectangular plates by Carrera unified formulation. Int J Non-Linear Mech 19:30265–30273. https://doi.org/10.1016/j.ijnonlinmec.2019.05.004 ((S0020-7462(19)30265-3))

    Article  Google Scholar 

  24. Vo TP, Thai HT, Nguyen TK, Inam F, Lee J (2015) A quasi-3D theory for vibration and buckling of functionally graded sandwich beams. Compos Struct 119:1–12. https://doi.org/10.1016/j.compstruct.2014.08.006

    Article  Google Scholar 

  25. Abdelhak Z, Hadji L, Daouadji TH, Bedia EAA (2016) Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions. Smart Struct Syst 18:267–291. https://doi.org/10.12989/sss.2016.18.2.267

    Article  Google Scholar 

  26. Haina EL, Bakora F, Bousahl A, Tounsi A, Mahmoud SR (2017) A simple analytical approach for thermal buckling of thick functionally graded sandwich plates. Struct Eng Mech 63(5):585–595. https://doi.org/10.12989/sem.2017.63.5.585

    Article  Google Scholar 

  27. Menasria A, Bouhadra A, Tounsi A, Bousahla AA, Mahmoud SR (2017) A new and simple HSDT for thermal stability analysis of FG sandwich plates. Steel Compos Struct 25:157–175. https://doi.org/10.12989/scs.2017.25.2.157

    Article  Google Scholar 

  28. Tu TM, Hoa LK, Hung DX, Hai LT (2020) Nonlinear buckling and post-buckling analysis of imperfect porous plates under mechanical loads. J Sandw Struct Mater 22(6):1910–1930. https://doi.org/10.1177/1099636218789612

    Article  Google Scholar 

  29. Bouderba B, Houari MSA, Tounsi A (2013) Thermomechanical bending response of FGM thick plates resting on winkler-pasternak elastic foundations. Steel Compos Struct 14:85–104. https://doi.org/10.12989/scs.2013.14.1.085

    Article  Google Scholar 

  30. Natarajan S, Manickam G (2012) Bending and vibration of functionally graded material sandwich plates using an accurate theory. Finite Elem Anal Des 57:32–42. https://doi.org/10.1016/j.finel.2012.03.006

    Article  Google Scholar 

  31. Kiani Y, Eslami MR (2012) Thermal buckling and post-buckling response of imperfect temperature-dependent sandwich FGM plates resting on elastic foundation. Arch Appl Mech 82:891–905. https://doi.org/10.1007/s00419-011-0599-8

    Article  MATH  Google Scholar 

  32. Boukhlif Z, Bouremana M, Bourada F, Bousahla AA, Bourada M, Tounsi A, Al-Osta MA (2019) A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation. Steel Compos Struct 31:503–516. https://doi.org/10.12989/scs.2019.31.5.503

    Article  Google Scholar 

  33. Dash S, Mehar K, Sharma N, Mahapatra TR, Panda SK (2019) Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel. Earthq Struct 16(1):55–67. https://doi.org/10.12989/eas.2019.16.1.055

    Article  Google Scholar 

  34. Tao C, Dai T (2021) Postbuckling of multilayer cylindrical and spherical shell panels reinforced with graphene platelet by isogeometric analysis. Eng Comput. https://doi.org/10.1007/s00366-021-01360-4

    Article  Google Scholar 

  35. Karimiasl M, Ebrahimi F, Mahesh V (2021) Postbuckling analysis of piezoelectric multiscale sandwich composite doubly curved porous shallow shells via homotopy perturbation method. Eng Comput 37:561–577. https://doi.org/10.1007/s00366-019-00841-x

    Article  Google Scholar 

  36. Ghannadpour SAM, Mehrparvar M (2020) Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique. Steel Compos Struct 34:227–239. https://doi.org/10.12989/scs.2020.34.2.227

    Article  Google Scholar 

  37. Mehar K, Panda SK (2017) Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method. Polym Compos. https://doi.org/10.1002/pc.24266

    Article  Google Scholar 

  38. Wang XZ, Shen HS (2011) Nonlinear analysis of sandwich plates with FGM face sheets resting on elastic foundations. Compos Struct 93:2521–2532. https://doi.org/10.1016/j.compstruct.2011.04.014

    Article  Google Scholar 

  39. Katariya PV, Panda SK (2020) Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect. Steel Compos Struct 34(2):279–288. https://doi.org/10.12989/scs.2020.34.2.279

    Article  Google Scholar 

  40. Panda SK, Singh BN (2009) Thermal post-buckling behaviour of laminated composite cylindrical/hyperboloid shallow shell panel using nonlinear finite element method. Compos Struct 91(3):366–374. https://doi.org/10.1016/j.compstruct.2009.06.004

    Article  Google Scholar 

  41. El Meiche N, Tounsi A, Ziane N, Mechab I, Bedia EAA (2011) A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate. Int J Mech Sci 53:237–247. https://doi.org/10.1016/j.ijmecsci.2011.01.004

    Article  Google Scholar 

  42. Kettaf FZ, Houari MSA, Benguediab M, Tounsi A (2013) Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model. Steel Compos Struct 15:399–423. https://doi.org/10.12989/scs.2013.15.4.399

    Article  Google Scholar 

  43. Na KS, Kim JH (2004) Three-dimensional thermal buckling analysis of functionally graded materials. Compos Part B Eng 35:429–437. https://doi.org/10.1016/j.compositesb.2003.11.013

    Article  Google Scholar 

  44. Na KS, Kim JH (2006) Thermal post-buckling investigations of functionally graded plates using 3-D finite element method. Finite Elem Anal Des Mech Adv Mater Struct 42:749–756. https://doi.org/10.1016/j.finel.2005.11.005

    Article  Google Scholar 

  45. Shen HS (2004) Thermal post-buckling behavior of functionally graded cylindrical shells with temperature-dependent properties. Int J Solids Struct 41:1961–1974. https://doi.org/10.1016/j.ijsolstr.2003.10.023

    Article  MATH  Google Scholar 

  46. Woo J, Meguid SA, Stranar JCT, Liew KM (2005) Thermomechanical post-buckling analysis of moderately thick functionally graded plates and shallow shells. Int J Mech Sci 47:1147–1171. https://doi.org/10.1016/j.ijmecsci.2005.04.008

    Article  MATH  Google Scholar 

  47. Park JS, Kim JH (2006) Thermal post-buckling and vibration analyses of functionally graded plates. J Sound Vib 289:77–93. https://doi.org/10.1016/j.jsv.2005.01.031

    Article  MATH  Google Scholar 

  48. Lal A, Jagtap KR, Singh BN (2013) Post-buckling response of functionally graded materials plate subjected to mechanical and thermal loadings with random material properties. Appl Math Model 37:2900–2920. https://doi.org/10.1016/j.apm.2012.06.013

    Article  MathSciNet  MATH  Google Scholar 

  49. Ovesy HR, Ghannadpour SAM, Nassirnia M (2015) Post-buckling analysis of rectangular plates comprising functionally graded strips in thermal environments. Comput Struct 147:209–215. https://doi.org/10.1016/j.compstruc.2014.09.011

    Article  Google Scholar 

  50. Zhang DG, Zhou H-M (2015) Mechanical and thermal post-buckling analysis of FGM rectangular plates with various supported boundaries resting on nonlinear elastic foundations. Thin Walled Struct 89:142–151. https://doi.org/10.1016/j.tws.2014.12.021

    Article  Google Scholar 

  51. Dung DV, Nga NT (2016) Buckling and post-buckling nonlinear analysis of imperfect FGM plates reinforced by fgm stiffeners with temperature-dependent properties based on TSDT. Acta Mech 227:2377–2401. https://doi.org/10.1007/s00707-016-1637-y

    Article  MathSciNet  MATH  Google Scholar 

  52. Taczała M, Buczkowski R, Kleiber M (2017) Nonlinear buckling and post-buckling response of stiffened FGM plates in thermal environments. Compos Part B 109:238–247. https://doi.org/10.1016/j.compositesb.2016.09.023

    Article  Google Scholar 

  53. Zhang DG (2017) Thermal post-buckling analysis of functionally graded material elliptical plates based on high-order shear deformation theory. Mech Adv Mater Struct 24:142–148. https://doi.org/10.1080/15376494.2015.1124158

    Article  Google Scholar 

  54. Tung HV (2015) Thermal and thermomechanical post-buckling of FGM sandwich plates resting on elastic foundations with tangential edge constraints and temperature dependent properties. Compos Struct 131:1028–1039. https://doi.org/10.1016/j.compstruct.2015.06.043

    Article  Google Scholar 

  55. Singh VK, Panda SK (2014) Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels. Thin Wall Struct 85:341–349. https://doi.org/10.1016/j.tws.2014.09.003

    Article  Google Scholar 

  56. Thankam VS, Singh G, Rao GV, Rath AK (2003) Thermal post-buckling behaviour of laminated plates using a shear-flexible element based on coupled-displacement field. Compos Struct 59(3):351–359. https://doi.org/10.1016/S0263-8223(02)00243-X

    Article  Google Scholar 

  57. Reddy JN (2004) An introduction to nonlinear finite element analysis. Oxford University Press, Cambridge

    Book  MATH  Google Scholar 

  58. Trabelsi S, Zghal S, Dammak F (2020) Thermo-elastic buckling and post-buckling analysis of functionally graded thin plate and shell structures. J Braz Soc Mech Sci Eng 42:233. https://doi.org/10.1007/s40430-020-02314-5

    Article  Google Scholar 

  59. Cook RD, Malku DS, Plesha ME, Witt RJ (2009) Concepts and applications of finite element analysis, 4th edn. Wiley, Singapore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Kumar Panda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

\(\left\{ \sigma \right\} = \left\{ {\begin{array}{*{20}c} {\sigma_{x} } & {\sigma_{y} } & {\sigma_{z} } & {\tau_{yz} } & {\tau_{xz} } & {\tau_{xy} } \\ \end{array} } \right\}^{T} ,\)

\(\left\{ \varepsilon \right\} = \left\{ {\begin{array}{*{20}c} {\varepsilon_{x} } & {\varepsilon_{y} } & {\varepsilon_{z} } & {\gamma_{yz} } & {\gamma_{xz} } & {\gamma_{xy} } \\ \end{array} } \right\}^{T} ,\)

\(\left\{ \alpha \right\} = \left\{ {\begin{array}{*{20}c} {\alpha_{x} } & {\alpha_{y} } & 0 & 0 & 0 & {2\alpha_{xy} }\\ \end{array} } \right\}^{T} .\)

Appendix B

\(u_{0} = \sum\limits_{i = 1}^{9} {N_{i} u_{0i} }, v_{0} = \sum\limits_{i = 1}^{9} {N_{i} v_{0i} }, w_{0} = \sum\limits_{i = 1}^{9} {N_{i} w_{0i} }, \phi_{x} = \sum\limits_{i = 1}^{9} {N_{i} \phi_{xi} }, \phi_{y} = \sum\limits_{i = 1}^{9} {N_{i} \phi_{yi} }, u_{0}^{*} = \sum\limits_{i = 1}^{9} {N_{i} u_{0i}^{*} },v_{0}^{*} = \sum\limits_{i = 1}^{9} {N_{i} v_{0i}^{*} }, \phi_{x}^{*} = \sum\limits_{i = 1}^{9} {N_{i} \phi_{xi}^{*} }, \phi_{y}^{*} = \sum\limits_{i = 1}^{9} {N_{i} \phi_{yi}^{*} }.\)

Appendix C

\(\left[ {D_{1} } \right] = \int\limits_{ - h/2}^{ + h/2} {\left[ {T^{l} } \right]^{T} \left[ Q \right]\left[ {T^{l} } \right]^{T} {\text{d}}z}\), \(\left[ {D_{2} } \right] = \int\limits_{ - h/2}^{ + h/2} {\left[ {T^{l} } \right]^{T} \left[ Q \right]\left[ {T^{nl} } \right]^{T} {\text{d}}z}\), \(\left[ {D_{3} } \right] = \int\limits_{ - h/2}^{ + h/2} {\left[ {T^{nl} } \right]^{T} \left[ Q \right]\left[ {T^{l} } \right]^{T} {\text{d}}z}\), \(\left[ {D_{4} } \right] = \int\limits_{ - h/2}^{ + h/2} {\left[ {T^{nl} } \right]^{T} \left[ Q \right]\left[ {T^{nl} } \right]^{T} {\text{d}}z}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, B., Mehar, K., Sahoo, B. et al. Thermal post-buckling analysis of graded sandwich curved structures under variable thermal loadings. Engineering with Computers 39, 1267–1283 (2023). https://doi.org/10.1007/s00366-021-01514-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01514-4

Keywords

Navigation