Abstract
The present paper provides an analysis to obtain the critical buckling load and vibration frequencies of the sandwich cylindrical panel with functionally graded (FG) face sheets and FG porous core resting on an elastic foundation, subjected to mechanical load and in thermal environments. The panel is formulated within the framework of the nonlocal strain gradient theory for shell model and classical shell theory. Based on Hamilton’s principle and Galerkin’s method, the effects of nonlocal and strain gradient parameters, materials and geometrical characteristics, porosity, temperature and elastic foundation on buckling load, fundamental frequencies, and dynamic response of the panel are considered.
Similar content being viewed by others
References
Hassan, A.H.A., Kurgan, N.: A review on buckling analysis of functionally graded plates under thermo-mechanical loads. Int. J. Eng. Appl. Sci. 11(1), 345–368 (2019). https://doi.org/10.1016/j.compstruct.2016.05.042
Dai, H.L., Rao, Y.N., Dai, T.: A review of recent researches on FGM cylindrical structures under coupled physical interactions, 2000–2015. Compos. Struct. 152, 199–225 (2016). https://doi.org/10.1016/j.compstruct.2016.05.042
Nejad, M.Z., Jabbari, M., Hadi, A.: A review of functionally graded thick cylindrical and conical shells. J. Comput. Appl. Mech. 48(2), 357–370 (2017)
Mauricio, F.C., Antonio, J.M.F., Volnei, T.: A Review on plate and shell theories for laminated and sandwich Structures highlighting the finite element method. Compos. Struct. 156, 63–77 (2016)
Sun, J., Xu, X., Lim, C.W.: Buckling of functionally graded cylindrical shells under combined thermal and compressive loads. J. Thermal Stress. 37, 340–362 (2014). https://doi.org/10.1080/01495739.2013.869143
Zhou, F., Chen, Z., Fan, H., Huang, S.: An analytical study on the buckling of cylindrical shells with stepwise variable thickness subjected to uniform external pressure. Mech. Adv. Mater. Struct. 23(10), 1207–1215 (2016). https://doi.org/10.1080/15376494.2015.1068401
Nam, V.H., Trung, N.T., Hoa, L.K.: Buckling and postbuckling of porous cylindrical shells with functionally graded composite coating under torsion in thermal environment. Thin-Walled Struct. 144, 106253 (2019). https://doi.org/10.1016/j.tws.2019.106253
Khazaeinejad, P., Najafizadeh, M.M., Jenabi, J., Isvandzibaei, M.R.: On the buckling of functionally graded cylindrical shells under combined external pressure and axial compression. J. Pressure Vessel Technol. 132(6), 064501 (2010). https://doi.org/10.1115/1.4001659
Bagherizadeh, E., Kiani, Y., Eslami, M.R.: Mechanical buckling of functionally graded material cylindrical shells surrounded by Pasternak elastic foundation. Compos. Struct. 93, 3063–3071 (2011). https://doi.org/10.1016/j.compstruct.2011.04.022
Sun, J., Xu, X., Lim, C.W., Qiao, W.: Accurate buckling analysis for shear deformable FGM cylindrical shells under axial compression and thermal loads. Compos. Struct. 123, 246–256 (2015). https://doi.org/10.1016/j.compstruct.2014.12.030
Zenkou, A.M., Radwan, A.F.: Bending and buckling analysis of FGM plates resting on elastic foundations in hygrothermal environment. Arch. Civil. Mech. Enginee. 20, 112 (2020). https://doi.org/10.1007/s43452-020-00116-z
Akbari, M., Azadi, M., Fahham, H.: Free vibration analysis of thick sandwich cylindrical panels with saturated FG-porous core. Mech. Adv. Mater. Struct. (2020). https://doi.org/10.1080/15397734.2020.1748051
Chehreghani, M., Pazhooh, M.D., Shakeri, M.: Vibration analysis of a fluid conveying sandwich cylindrical shell with a soft core. Compos. Struct. 230, 111470 (2019). https://doi.org/10.1016/j.compstruct.2019.111470
Karroubi, R., Irani-rahaghi, M.: Rotating sandwich cylindrical shells with an FGM core and two FGPM layers: free vibration analysis. Appl. Math. Mech. -Engl. Ed. 40(4), 563–578 (2019). https://doi.org/10.1007/s10483-019-2469-8
Keleshteri, M.M., Jelovica, J.: Nonlinear vibration behavior of functionally graded porous cylindrical panels. Compos. Struct. 239, 112028 (2020). https://doi.org/10.1016/j.compstruct.2020.112028
Fard, K.M., Gholami, M., Reshadi, F., Livani, M.: Free vibration and buckling analyses of cylindrical sandwich panel with magneto rheological fluid laye. J. Sand. Struct. Mat. 19(4), 397–423 (2017). https://doi.org/10.1177/1099636215603034
Sofiyev, A.H.: The vibration and buckling of sandwich cylindrical shells covered by different coatings subjected to the hydrostatic pressure. Compos. Struct. 117, 124–134 (2014). https://doi.org/10.1016/j.compstruct.2014.06.025
Ashok, R.B., Srinivasa, C.V., Suresh, Y.J., Prema Kumar, W.P.: Buckling behaviour of cylindrical panels. Nonlinear Eng. 4(2), 67–75 (2015). https://doi.org/10.1515/nleng-2014-0019
Lopatin, A.V., Morozov, E.V.: Buckling analysis of the SSCC composite sandwich cylindrical panel under axial compression. J. Sand. Struct. Mat. 23(4), 1292–1310 (2019). https://doi.org/10.1177/1099636219857172
Sadighi, M., Abouhamzeh, M.: Buckling optimisation of sandwich cylindrical panels. Curved Layer. Struct. 3(1), 137–145 (2016). https://doi.org/10.1515/cls-2016-0011
Ahmadia, S.A., Pashaeia, M.H., Jafari-Talookolaei, R.A.: Buckling analysis of sandwich orthotropic cylindrical shells by considering the geometrical imperfection in face-sheets. Appl. Comput. Mech. 13(1), 5–20 (2019)
Mohammadi, F., Sedaghati, R.: Linear and nonlinear vibration analysis of sandwich cylindrical shell with constrained viscoelastic core layer. Int. J. Mech. Sci. 54, 156–171 (2012). https://doi.org/10.1016/j.ijmecsci.2011.10.006
Ansari, R., Shahabodini, A., Faghih Shojaei, M.: Nonlocal three-dimensional theory of elasticity with application to free vibration of functionally graded nanoplates on elastic foundations. Phys E: Low-Dimen. Sys. Nanostruct. 76, 70–81 (2016). https://doi.org/10.1016/j.physe.2015.09.042
Bouazza, M., Becheri, T., Boucheta, A., Benseddiq, N.: Thermal buckling analysis of nanoplates based on nonlocal elasticity theory with four-unknown shear deformation theory resting on Winkler-Pasternak elastic foundation. Inter. J. Comput. Meth. Engineer. Sci. Mech. 17(5–6), 362–373 (2016). https://doi.org/10.1080/15502287.2016.1231239
Zenkour, A.M., Arefi, M., Alshehri, N.A.: Size-dependent analysis of a sandwich curved nanobeam integrated with piezomagnetic face-sheets. Results. Phys. 7, 2172–2182 (2017). https://doi.org/10.1016/j.rinp.2017.06.032
Arefi, M., Civalek, O.: Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory. Archiv. Civ. Mech. Eng. 20, 22 (2020). https://doi.org/10.1007/s43452-020-00032-2
Sahmani, S., Aghdam, M.M.: Size dependency in axial postbuckling behavior of hybrid FGM exponential shear deformable nanoshells based on the nonlocal elasticity theory. Compos. Struct. 166, 104–113 (2017). https://doi.org/10.1016/j.compstruct.2017.01.051
Sun, J., Wang, Z., Zhou, Z., Xu, X.: Surface effects on the buckling behaviors of piezoelectric cylindrical nanoshells using nonlocal continuum model. Appl. Math. Model. 59, 341–356 (2018). https://doi.org/10.1016/j.apm.2018.01.032
Ashoori, A., Salari, E., Sadough Vanini, S.A.E.: Size-dependent thermal stability analysis of embedded functionally graded annular nanoplates based on the nonlocal elasticity theory. Int. J. Mech. Sci. 119, 396–411 (2016). https://doi.org/10.1016/j.ijmecsci.2016.10.035
Czekanski, A., Zozulya, V.V.: Vibration analysis of nonlocal beams using higher-order theory and comparison with classical models. Mech. Adv. Mater. Struct. 28(12), 1293–1309 (2021). https://doi.org/10.1080/15376494.2019.1665761
Yang, L., Lianzhi, Y., Liangliang, Z., Gao, Y.: Nonlocal free and forced vibration of multilayered two-dimensional quasicrystal nanoplates. Mech. Adv. Mater. Struct. 28(12), 1216–1226 (2021). https://doi.org/10.1080/15376494.2019.1655687
Fang, J., Zheng, S., Xiao, J., Zhang, X.: Vibration and thermal buckling analysis of rotating nonlocal functionally graded nanobeams in thermal environment. Aerosp. Sci. Technol. 106, 106146 (2020). https://doi.org/10.1016/j.ast.2020.106146
Nami, M.R., Janghorban, M., Damadam, M.: Thermal buckling analysis of functionally graded rectangular nanoplates based on nonlocal third-order shear deformation theory. Aerosp. Sci. Technol. 41, 7–15 (2015). https://doi.org/10.1016/j.ast.2014.12.001
Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48, 2496–2510 (2011)
Dargush, G.F., Apostolakis, G., Hadjesfandiari, A.R.: Two- and three-dimensional size-dependent couple stress response using a displacement-based variational method. Eur. J. Mech. A. Solids 88, 104268 (2021). https://doi.org/10.1016/j.euromechsol.2021.104268
Ghadiri, M., SafarPour, H.: Free vibration analysis of size-dependent functionally graded porous cylindrical microshells in thermal environment. J. Thermal. Stress. 40(1), 55–71 (2017). https://doi.org/10.1080/01495739.2016.1229145
Mehralian, F., Beni, Y.T., Ansari, R.: Size dependent buckling analysis of functionally graded piezoelectric cylindrical nanoshell. Compos. Struct. 152, 45–61 (2015). https://doi.org/10.1016/j.compstruct.2016.05.024
Ghayesh, M.H., Farokhi, H., Amabili, M.: Nonlinear dynamics of a microscale beam based on the modified couple stress theory. Compos Part B: Eng. 50, 318–324 (2013). https://doi.org/10.1016/j.compositesb.2013.02.021
Akgöz, B., Civalek, Ö.: Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory. Compos. Struct. 98, 314–322 (2013). https://doi.org/10.1016/j.compstruct.2012.11.020
Farokhi, H., Ghayesh, M.H.: Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory. Int. J. Mech. Sci. 90, 133–144 (2015). https://doi.org/10.1016/j.ijmecsci.2014.11.002
Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R., Darabi, M.A.: Nonlinear vibrations of functionally graded Mindlin microplates based on the modified couple stress theory. Compos. Struct. 114, 124–134 (2014). https://doi.org/10.1016/j.compstruct.2014.04.013
Shafiei, N., Kazemi, M.: Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/micro-scale beams. Aerosp. Sci. Technol. 66, 1–11 (2017). https://doi.org/10.1016/j.ast.2017.02.019
Farzam, A., Hassani, B.: Isogeometric analysis of in-plane functionally graded porous microplates using modified couple stress theory. Aerosp. Sci. Technol. 91, 508–524 (2019). https://doi.org/10.1016/j.ast.2019.05.012
Anoop Krishnan, N.M., Ghosh, D.: Buckling analysis of cylindrical thin-shells using strain gradient elasticity theory. Meccanica 52, 1369–1379 (2017). https://doi.org/10.1007/s11012-016-0468-1
Lazopoulos, K., Lazopoulos, A.K.: Nonlinear strain gradient elastic thin shallow shells. Eur. J. Mech. A/Solids. 30(3), 286–292 (2011). https://doi.org/10.1016/j.euromechsol.2010.12.011
Shahraki, H., Riahi, H.T., Izadinia, M., Talaeitaba, S.B.: Mindlin’s strain gradient theory for vibration analysis of FG-CNT-reinforced composite nanoplates resting on Kerr foundation in thermal environment. J. Therm. Compos. Mater. 34(1), 68–101 (2019). https://doi.org/10.1177/0892705719843175
Cornacchia, F., Fabbrocino, F., Fantuzzi, N., Luciano, R., Penna, R.: Anlalytical solution of cross- and angle-ply nano plates with strain gradient theory for linear vibration and buckling. Mech. Adv. Mater. Struct. 28(12), 1201–1215 (2021). https://doi.org/10.1080/15376494.2019.1655613
Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids. 78, 298–313 (2015). https://doi.org/10.1016/j.jmps.2015.02.001
Li, L., Li, L., Hu, Y.: Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. Int. J. Eng. Sci. 102, 77–92 (2016). https://doi.org/10.1016/j.ijengsci.2016.02.010
Şimşek, M.: Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int. J. Eng. Sci. 105, 12–27 (2016). https://doi.org/10.1016/j.ijengsci.2016.04.013
Ebrahimi, F., Barati, M.R.: A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams. Compos. Struct. 159, 174–182 (2017). https://doi.org/10.1016/j.compstruct.2016.09.058
Hieu, D.V., Chan, D.Q.: Nonlinear vibration and stability of functionally graded porous microbeam under electrostatic actuation. Arch. Appl. Mech. 91, 2301–2329 (2021). https://doi.org/10.1007/s00419-021-01884-7
Hieu, D.V., Sedighi, H.M., Chan, D.Q., Civalek, O., Abouelregal, A.E.: Nonlinear vibration and stability of FG nanotubes conveying fluid via nonlocal strain gradient theory. Struct. Eng. Mech. 78(1), 103–116 (2021)
Ebrahimi, F., Barati, M.R., Dabbagh, A.: A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. Int. J. Eng. Sci. 107, 169–182 (2016). https://doi.org/10.1016/j.ijengsci.2016.07.008
Farajpour, A., Haeri Yazdi, M.R., Rastgoo, A., Mohammadi, M.: A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment. Acta. Mech. 227, 1849–1867 (2016). https://doi.org/10.1007/s00707-016-1605-6
Hossein, G.S.M., Shirko, F.: Free vibration and wave propagation of thick plates using the generalized nonlocal strain gradient theory. J. Theor. Appl. Vib. Acous. 3(2), 165–198 (2017)
Barati, M.R., Shahverdi, H.: Hygro-thermal vibration analysis of graded double-refined-nanoplate systems using hybrid nonlocal stress-strain gradient theory. Compos. Struct. 176, 982–995 (2017). https://doi.org/10.1016/j.compstruct.2017.06.004
Tai, T.H., Jalaei, M.H.J.: Dynamic stability of viscoelastic porous FG nanoplate under longitudinal magnetic field via a nonlocal strain gradient quasi-3D theory. Compos. Part B: Eng. 175, 107164 (2019). https://doi.org/10.1016/j.compositesb.2019.107164
Ebrahimi, F., Barati, M.R.: Hygrothermal effects on static stability of embedded single-layer graphene sheets based on nonlocal strain gradient elasticity theory. J. Ther. Stress. 42(12), 1535–1550 (2019). https://doi.org/10.1080/01495739.2019.1662352
Sharifi, Z., Khordad, R., Gharaati, A., Forozani, G.: An analytical study of vibration in functionally graded piezoelectric nanoplates: nonlocal strain gradient theory. Appl. Math. Mech. -Engl. Ed. 40(12), 1723–1740 (2019). https://doi.org/10.1007/s10483-019-2545-8
Abazid, M.A.: The nonlocal strain gradient theory for hygro-thermo-electro-magnetic effects on buckling, vibration and wave propagation in piezo-electro-magnetic nanoplates. Int. J. Appl. Mech. 11(7), 1950067 (2019). https://doi.org/10.1142/S1758825119500674
Arefi, M., Kiani, M., Rabczuk, T.: Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets. Compos. Part B: Eng. 168, 320–333 (2019). https://doi.org/10.1016/j.compositesb.2019.02.057
Barati, M.R.: Vibration analysis of porous FG nanoshells with even and uneven porosity distributions using nonlocal strain gradient elasticity. Acta. Mech. 229, 1183–1196 (2018). https://doi.org/10.1007/s00707-017-2032-z
Sahmani, S., Aghdam, M.M.: Nonlocal strain gradient shell model for axial buckling and postbuckling analysis of magneto-electro-elastic composite nanoshells. Compos. Part B 132, 258–274 (2018). https://doi.org/10.1016/j.compositesb.2017.09.004
Sahmani, S., Fattahi, A.M.: Small scale effects on buckling and postbuckling behaviors of axially loaded FGM nanoshells based on nonlocal strain gradient elasticity theory. Appl. Math. Mech. -Engl. Ed. 39, 561–580 (2018). https://doi.org/10.1007/s10483-018-2321-8
Mehralian, F., Beni, Y.T.: A nonlocal strain gradient shell model for free vibration analysis of functionally graded shear deformable nanotubes. Int. J. Eng. Appl. Sci. (IJEAS) 9(2), 88–102 (2017)
Lu, L., Zhu, L., Zhao, J., Liu, G.: A nonlocal strain gradient shell model incorporating surface effects for vibration analysis of functionally graded cylindrical nanoshells. Appl. Math. Mech. -Engl. Ed. 40(12), 1695–1722 (2019). https://doi.org/10.1007/s10483-019-2549-7
Ma, L.H., Ke, L.L., Reddy, J.N., Yang, J., Kitipornchai, S., Wang, Y.S.: Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient theory. Compos. Struct. 19, 10–23 (2018). https://doi.org/10.1016/j.compstruct.2018.05.061
Babaei, H., Eslami, M.R.: On nonlinear vibration and snap-through buckling of long FG porous cylindrical panels using nonlocal strain gradient theory. Compos. Struct. 256, 113125 (2021). https://doi.org/10.1016/j.compstruct.2020.113125
Zhao, X., Liew, K.M.: A mesh-free method for analysis of the thermal and mechanical buckling of functionally graded cylindrical shell panels. Comput. Mech. 45, 297–310 (2010). https://doi.org/10.1007/s00466-009-0446-8
Brush, D.O., Almroth, B.O.: Buckling of bars, plates and shells. McGraw-Hill, New York (1975)
Eslami, M. R., Buckling and postbuckling of beams, plates, and shells, Springer International Publishing AG, Gewerbestrasse 11, 6330 Cham, Switzerland, 2018.
Timoshenko, S., Gere, J., Theory of elastic stability, 2nd edn, New York: McGraw-Hill, 1961.
Acknowledgements
This research is funded by the Project number QG.21.25 of VNU Hanoi “Nonlinear stability of laminated smart composite plates and shells”. The authors are grateful for this support.
Author information
Authors and Affiliations
Contributions
NDD: Conceptualization, Funding acquisition, Methodology, Supervision, Writing—review and editing; Corresponding author. DQC: Investigation, Methodology, Validation, Writing—original draft. TQQ: Investigation, Methodology. BGP: Investigation, Methodology, Software, Validation. DVH: Investigation, Methodology, Software, Validation.
Corresponding author
Ethics declarations
Conflict of interest
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix 1
1.1 FG porous type 1
1.2 FG porous type 2
1.3 FG porous type 3
Appendix 2
Rights and permissions
About this article
Cite this article
Chan, D.Q., Quan, T.Q., Phi, B.G. et al. Buckling analysis and dynamic response of FGM sandwich cylindrical panels in thermal environments using nonlocal strain gradient theory. Acta Mech 233, 2213–2235 (2022). https://doi.org/10.1007/s00707-022-03212-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00707-022-03212-8