Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Optimizing triangular high-order surface meshes by energy-minimization

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

High-order methods are increasingly popular in computational fluid dynamics, but the construction of suitable curvilinear meshes still remains a challenge. This paper presents a strictly local optimization method to construct high-order triangular surface patches of high quality and accuracy. It combines fitting and energy-minimization, in which approximate bending and stretching functionals are minimized by means of an incremental procedure. The method was applied to analytically defined smooth surfaces as well as scattered surface data derived from scanning data. In both cases the optimization yielded considerable improvements in patch quality, while preserving the accuracy of pure least-squares fitting. As intended, the method achieves the greatest benefit with coarse meshes and high polynomial order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Deville M, Fischer PF, Mund EH (2002) High-order methods for incompressible fluid flow. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  2. Karniadakis GE, Sherwin S (2005) Spectral/hp element methods for computational fluid dynamics. Numerical mathematics and scientific computation. Oxford University Press, Oxford

    MATH  Google Scholar 

  3. Cockburn BB, Karniadakis GE, Shu C-W (2000) Discontinuous Galerkin methods: theory, computation and applications. Lecture notes in computational science and engineering. Springer, Berlin

    Book  Google Scholar 

  4. Hesthaven JS, Warburton T (2008) Nodal discontinuous Galerkin methods: algorithms, analysis, and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  5. Sherwin SJ, Peiró J (2002) Mesh generation in curvilinear domains using high-order elements. Int J Numer Methods Eng 53(1):207–223

    Article  MATH  Google Scholar 

  6. Luo X-J, Shephard MS, O’Bara RM, Nastasia R, Beall MW (2004) Automatic p-version mesh generation for curved domains. Eng Comput 20(3):273–285

    Article  Google Scholar 

  7. Luo X-J, Shephard MS, Lee L-Q, Ge L, Ng C (2011) Moving curved mesh adaptation for higher-order finite element simulations. Eng Comput 27:41–50

    Article  Google Scholar 

  8. Hindenlang F, Bolemann T, Munz CD (2015) Mesh curving techniques for high order discontinuous Galerkin simulations. In: Kroll N, Hirsch C, Bassi F, Johnston C, Hillewaert K (eds) IDIHOM: industrialization of high-order methods—a top-down approach, vol 128. Springer, Berlin, pp 133–152

    Google Scholar 

  9. Persson PO, Peraire J (2009) Curved mesh generation and mesh refinement using Lagrangian solid mechanics. In: Proc. of the 47th AIAA aerospace sciences meeting and exhibit. https://arc.aiaa.org/doi/abs/10.2514/6.2009-949

  10. Xie Z, Sevilla R, Hassan O, Morgan K (2013) The generation of arbitrary order curved meshes for 3d finite element analysis. Comput Mech 51(3):361–374

    Article  MathSciNet  MATH  Google Scholar 

  11. Moxey D, Ekelschot D, Keskin Ü, Sherwin SJ, Peiró J (2015) High-order curvilinear meshing using a thermo-elastic analogy. Comput Aided Des 72:130–139

    Article  Google Scholar 

  12. Toulorge T, Geuzaine C, Remacle J-F, Lambrechts J (2013) Robust untangling of curvilinear meshes. J Comput Phys 254:8–26

    Article  MathSciNet  MATH  Google Scholar 

  13. Gargallo-Peiró A, Roca X, Peraire J, Sarrate J (2015) Optimization of a regularized distortion measure to generate curved high-order unstructured tetrahedral meshes. Int J Numer Methods Eng 103(5):342–363

    Article  MathSciNet  MATH  Google Scholar 

  14. Remacle JF, Lambrechts J, Geuzaine C, Toulorge T (2014) Optimizing the geometrical accuracy of 2d curvilinear meshes. 23rd international meshing roundtable (IMR23). Proced Eng 82:228–239

  15. Ruiz-Gironès E, Roca X, Sarrate J (2015) High-order mesh curving by distortion minimization with boundary nodes free to slide on a 3D CAD representation. Comput Aided Des 72:130–139

    Google Scholar 

  16. Bock K, Stiller J (2014) Energy-minimizing curve fitting for high-order surface mesh generation. Appl Math 5:3318–3327

    Article  Google Scholar 

  17. Farin G (2002) Curves and surfaces for CAGD—a practical guide, 5th edn. Academic Press, Cambridge

    Google Scholar 

  18. Hoschek J, Lasser D (1993) Fundamentals of computer aided geometric design. A. K. Peters, Ltd., Natick, MA

  19. Celniker G, Gossard D (1991) Deformable curve and surface finite-elements for free-form shape design. SIGGRAPH Comput Gr 25(4):257–266

    Article  Google Scholar 

  20. Greiner G (1994) Surface construction based on variational principles. Wavelets Images Surf Fitt:277–286. https://dl.acm.org/citation.cfm?id=190587

  21. Welch W, Witkin A (1992) Variational surface modeling. SIGGRAPH Comput Gr 26(2):157–166

    Article  Google Scholar 

  22. Petitjean S (2002) A survey of methods for recovering quadrics in triangle meshes. ACM Comput Surv 34(2):211–262

    Article  Google Scholar 

  23. Dey S, O’Bara RM, Shephard MS (1999) Curvilinear mesh generation in 3d. In: Proceedings of the eighth international meshing roundtable, Wiley, Hoboken, pp 407–417

  24. Vlachos A, Peters J, Boyd C, Mitchell JL (2001) Curved pn triangles. In: Proceedings of the 2001 symposium on interactive 3D graphics, I3D ’01, ACM, New York, pp 159–166

  25. Max N (1999) Weights for computing vertex normals from facet normals. J Gr GPU Game Tools 4(2):1–6

    Google Scholar 

  26. Phong BT (1975) Illumination for computer generated pictures. Commun ACM 18(6):311–317

    Article  Google Scholar 

  27. Bock K, Stiller J (2014) Generation of high-order polynomial patches from scattered data. In: Azaïez M, El Fekih H, Hesthaven JS (eds) Spectral and high-order methods for partial differential equations—ICOSAHOM 2012. Lecture notes in computational science and engineering, vol 95. Springer, Berlin, pp 157–167

Download references

Acknowledgements

The authors gratefully acknowledge the funding of this project by the German Research Foundation (DFG, STI 157/4-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Bock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bock, K., Stiller, J. Optimizing triangular high-order surface meshes by energy-minimization. Engineering with Computers 34, 659–670 (2018). https://doi.org/10.1007/s00366-017-0565-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-017-0565-3

Keywords

Navigation