Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The generation of arbitrary order curved meshes for 3D finite element analysis

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A procedure for generating curved meshes, suitable for high-order finite element analysis, is described. The strategy adopted is based upon curving a generated initial mesh with planar edges and faces by using a linear elasticity analogy. The analogy employs boundary loads that ensure that nodes representing curved boundaries lie on the true surface. Several examples, in both two and three dimensions, illustrate the performance of the proposed approach, with the quality of the generated meshes being analysed in terms of a distortion measure. The examples chosen involve geometries of particular interest to the computational fluid dynamics community, including anisotropic meshes for complex three dimensional configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bassi F, Rebay S (1997) High-order accurate discontinuous finite element solution of the 2D Euler equations. J Comput Phys 138(2): 251–285

    Article  MathSciNet  MATH  Google Scholar 

  2. Brodersen O, Stürmer A (2001) Drag prediction of engine-airframe interference effects using unstructured Navier–Stokes calculations. In: 19th AIAA applied aerodynamics conference. AIAA

  3. Chen Q, Babuška I (1995) Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle. Comput Methods Appl Mech Eng 128(3–4): 405–417

    Article  MATH  Google Scholar 

  4. Chen Q, Babuška I (1996) The optimal symmetrical points for polynomial interpolation of real functions in the tetrahedron. Comput Methods Appl Mech Eng 137(1): 89–94

    Article  MATH  Google Scholar 

  5. Davies RW, Morgan K, Hassan O (2009) high order hybrid finite element method applied to the solution of electromagnetic wave scattering problems in the time domain. Comput Mech 44(3): 321–331

    Article  MathSciNet  MATH  Google Scholar 

  6. Dey S, O’Bara RM, Shephard MS (1999) Curvilinear mesh generation in 3D. In: 8th International Meshing Roundtable. Sandia National Laboratories, USA

  7. Dey S, O’Bara RM, Shephard MS (2001) Towards curvilinear meshing in 3D: the case of quadratic simplices. Comput Aided Des 33(3): 199–209

    Article  Google Scholar 

  8. Dey S, Shephard MS, Flaherty JE (1997) Geometry representation issues associated with p-version finite element computations. Comput Methods Appl Mech Eng 150(1-4): 39–55

    Article  MathSciNet  MATH  Google Scholar 

  9. Dunavant DA (1985) High degree efficient symmetrical gaussian quadrature rules for the triangle. Int J Numer Methods Eng 21(6): 1129–1148

    Article  MathSciNet  MATH  Google Scholar 

  10. Felippa CA (2004) A compendium of FEM integration formulas for symbolic work. Eng Comput 21(8): 867–890

    Article  MATH  Google Scholar 

  11. Hesthaven JS, Warburton T (2008) Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, vol 54. Springer, New York

    Google Scholar 

  12. Johnen A, Remacle JF, Geuzaine C (2011) Geometrical validity of curvilinear finite elements. In: 20th International Meshing Roundtable. Sandia National Laboratories, USA, pp 255–271

  13. Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119(1–2): 73–94

    Article  MATH  Google Scholar 

  14. Jörg P, Ulrich R (2008) Subdivision Surfaces, geometry and computing, vol 3. Springer, Berlin

    Google Scholar 

  15. Karniadakis GE, Sherwin SJ (2004) Spectral/hp element methods for computational fluid dynamics, 2nd edn. Oxford Universtity Press, Oxford

    Google Scholar 

  16. Kroll N (2010) The ADIGMA Project. In: Kroll N, Bieler H, Deconinck H, Couaillier V, van der Ven H, Sørensen K (eds) ADIGMA—a European initiative on the development of adaptive higher-order variational methods for aerospace applications, Notes on Numerical fluid mechanics and multidisciplinary design, vol 113, chap 1. Springer, New York, pp 1–9

    Chapter  Google Scholar 

  17. Ledger PD, Morgan K, Hassan O (2005) Frequency and time domain electromagnetic scattering simulations employing higher order edge elements. Comput Methods Appl Mech Eng 194(2–5): 105–125

    Article  MathSciNet  MATH  Google Scholar 

  18. Luo XJ, Shephard MS, Remacle JF (2002) The influence of geometric approximation on the accuracy of higher order methods. In: 8th International Conference on Numerical Grid Generation in Computational Field Simulations

  19. Luo XJ, Shephard MS, Remacle JF, O’Bara RM, Beall MW, Szabó, B, Actis R (2002) p-version mesh generation issues. In: 11th International Meshing Roundtable. Sandia National Laboratories, USA, pp 343–354

  20. Persson PO, Peraire J (2009) Curved mesh generation and mesh refinement using Lagrangian solid mechanics. In: Proceedings of the 47th AIAA aerospace sciences meeting and exhibit. AIAA

  21. Piegl L, Tiller W (1995) The NURBS book. Springer, London

    Book  MATH  Google Scholar 

  22. Roca X, Gargallo-Peiró A, Sarrate J (2011) Defining quality measures for high-order planar triangles and curved mesh generation. In: 20th International Meshing Roundtable. Sandia National Laboratories, USA, pp 365–383

  23. Sevilla R, Fernández-Méndez S (2011) Numerical integration over 2D NURBS shaped domains with applications to NURBS-enhanced FEM. Finite Elem Anal Des 47(10): 1209–1220

    Article  MathSciNet  Google Scholar 

  24. Sevilla R, Fernández-Méndez S, Huerta A (2008) NURBS-enhanced finite element method (NEFEM). Internat J Numer Methods Eng 76(1): 56–83

    Article  MATH  Google Scholar 

  25. Sevilla R, Fernández-Méndez S, Huerta A (2008) NURBS-enhanced finite element method (NEFEM) for Euler equations. Internat J Numer Methods Fluids 57(9): 1051–1069

    Article  MathSciNet  MATH  Google Scholar 

  26. Sevilla R, Fernández-Méndez S, Huerta A (2011) 3D NURBS-enhanced finite element method (NEFEM). Internat J Numer Methods Eng 88(2): 103–125

    Article  MATH  Google Scholar 

  27. Sevilla R, Fernández-Méndez S, Huerta A (2011) Comparison of high-order curved finite elements. Internat J Numer Methods Eng 87(8): 719–734

    Article  MATH  Google Scholar 

  28. Sherwin SJ, Peiró J (2002) Mesh generation in curvilinear domains using high-order elements. Internat J Numer Methods Engng 53(1): 207–223

    Article  MATH  Google Scholar 

  29. Solin P., Segeth K (2003) Higher-order finite element methods. Chapman & Hall, Boca Raton

    Google Scholar 

  30. Stein K, Tezduyar TE, Benney R (2003) Mesh moving techniques for fluid-structure interactions with large displacements. J Appl Mech 70(1): 58–63

    Article  MATH  Google Scholar 

  31. Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193(21–22): 2019–2032

    Article  MATH  Google Scholar 

  32. Taylor MA, Wingate BA, Vincent RE (2000) An algorithm for computing Fekete points in the triangle. SIAM J Numer Anal 38(5): 1707–1720

    Article  MathSciNet  MATH  Google Scholar 

  33. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10): 27–36

    Article  Google Scholar 

  34. Vincent PE, Jameson A (2011) Facilitating the adoption of unstructured high-order methods amongst a wider community of fluid dynamicists. Math Model Nat Phenom 6(3): 97–140

    Article  MathSciNet  MATH  Google Scholar 

  35. Wandzura S, Xiao H (2003) Symmetric quadrature rules on a triangle. Comput Math Appl 45(12): 1829–1840

    Article  MathSciNet  MATH  Google Scholar 

  36. Weatherill NP, Hassan O (1994) Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints. Internat J Numer Methods Eng 37(12): 2005–2039

    Article  MATH  Google Scholar 

  37. Xue D, Demkowicz L (2005) Control of geometry induced error in hp finite element (FE) simulations. I. Evaluation of FE error for curvilinear geometries. Internat J Numer Anal Model 2(3): 283–300

    MathSciNet  MATH  Google Scholar 

  38. Zienkiewicz OC, Morgan K (1983) Finite elements and approximation. Dover, Mineola

    MATH  Google Scholar 

  39. Zienkiewicz OC, Taylor RL (2000) The Finite Element Method, vol 1. The basis, 5th edn. Butterwort-Heinemann, Oxford

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Sevilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Z.Q., Sevilla, R., Hassan, O. et al. The generation of arbitrary order curved meshes for 3D finite element analysis. Comput Mech 51, 361–374 (2013). https://doi.org/10.1007/s00466-012-0736-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0736-4

Keywords

Navigation