Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Generalized moment estimation of stochastic differential equations

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

We study the semiparametric estimation of stochastic differential equations employing methods based on moment conditions, comparing the finite sample and robustness properties of generalized method of moments, empirical likelihood and minimum contrast methods using unconditional and conditional formulations of moment conditions. The results obtained indicate that the estimators proposed, particularly, the estimators based on exponential tilting, obtain better results than those of the generalized methods of moments normally used to estimate stochastic differential equations. This conclusion is mainly derived from the robustness properties of this method in the presence of problems of incorrect specification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ait-Sahalia Y (2002) Maximum-likelihood estimation of discretely-sampled diffusions: a closed-form approximation approach. Econometrica 70:223–262

    Article  MathSciNet  MATH  Google Scholar 

  • Anatolyev S (2005) Gmm, gel, serial correlation and asymptotic bias. Econometrica 73:983–1002

    Article  MathSciNet  MATH  Google Scholar 

  • Anatolyev S, Gospodinov N (2011) Methods for estimation and inference in modern econometrics. Chapman and Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Andrews DWK (1991) Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59:817–858

    Article  MathSciNet  MATH  Google Scholar 

  • Bachelier L (1900) Theorie de la speculation. English translation by A J Boness. In: Cootner PH (ed) The random character of stock market prices. MIT Press, Cambridge, pp 17–78, 1967

  • Bera A, Bilias Y (2002) The mm, me, ml, el, ef and gmm approaches to estimation: a synthesis. J Econom 107:51–86

    Article  MathSciNet  MATH  Google Scholar 

  • Bickel P, Klassen C, Ritov Y, Wellner J (1993) Efficient and adaptative estimation for semiparametric models. Johns Hopkins Press, Baltimore

    Google Scholar 

  • Bishwal JPN (2007) Parameter estimation in stochastic differential equations. Springer, Berlin

    MATH  Google Scholar 

  • Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ 81(3):637–654

    Article  MATH  Google Scholar 

  • Brennan M, Schwartz ES (1980) Analyzing convertible bonds. J Financ Quant Anal 15:907–929

    Article  Google Scholar 

  • Chan KG, Karolyi G, Longstaff F, Sanders AB (1992) An empirical comparasion of alternative models of term structure of interest rates. J Finance 47:1209–1227

    Article  Google Scholar 

  • Chaussé P (2010) Computing generalized method of moments and generalized empirical likelihood with R. J Stat Softw 34(11):1–35

    Article  Google Scholar 

  • Core Team R (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Cox J (1975) Notes on option pricing I: constant elasticity of diffusions. Unpublished manuscript, Stanford University

  • Cox JC, Ingersoll JE, Ross SA (1980) An analysis of variable rate loan contracts. J Finance 35(2):389–403

    Article  Google Scholar 

  • Cox JC, Ingersoll JE, Ross SA (1985) A theory of the term structure of interest rates. Econometrica 53:385–407

    Article  MathSciNet  MATH  Google Scholar 

  • Cuchiero C, Keller-Ressel M, Teichmann J (2012) Polynomial processes and their applications in mathematical finance. Finance Stoch 16(4):711–740

    Article  MathSciNet  MATH  Google Scholar 

  • DasGupta A (2008) Asymptotic theory of statistics and probability. Springer, Berlin

    MATH  Google Scholar 

  • Delbaen F, Schachermayer W (1994) A general version of the fundamental theory of asset pricing. Math Ann 300:463–250

    Article  MathSciNet  MATH  Google Scholar 

  • Dothan UL (1978) On the term structure of interest rates. J Financ Econ 6:59–59

    Article  Google Scholar 

  • Evdokimov K, Kitamura Y, Otsu T (2009) Robust estimation of moment condition models with weakly dependente data. Unpublished working paper

  • Fernholz ER (2002) Stochastic portfolio theory. Springer, New York

    Book  MATH  Google Scholar 

  • Fernholz ER, Karatzas I (2006) The implied liquidity premium for equities. Ann Finance 2:87–99

    Article  MATH  Google Scholar 

  • Filipovic D, Mayerhofer E, Schneider P (2013) Density approximations for multivariate affine jump-diffusion processes. J Econom 176(2):93–111

    Article  MathSciNet  MATH  Google Scholar 

  • Gourieroux C, Monfort A (1995) Statistics and econometric models. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Gourieroux C, Monfort A (1996) Simulation-based econometric models. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Hansen LP (1982) Large sample properties of generalized method of moments estimators. Econometrica 50:1029–1054

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen LP, Heaton J, Yaron A (1996) Finite sample properties of some alternative gmm estimators. J Bus Econ Stat 14:262–280

    Google Scholar 

  • Harrison JM, Kreps D (1979) Martingales and arbitrage in multiperiod securities markets. J Econ Theory 20:381–408

    Article  MathSciNet  MATH  Google Scholar 

  • Harrison JM, Pliska S (1981) Martingales and stochastic integrals in the theory of continous trading. Stochast Process Their Appl 11:215–260

    Article  MathSciNet  MATH  Google Scholar 

  • Iacus SM (2008) Simulation and inference for stochastic differential equations with R examples. Springer, Berlin

    Book  MATH  Google Scholar 

  • Imbens GW, Spady RH, Johnson P (1998) Information theoretic approaches to inference in moment conditions models. Econometrica 66:333–357

    Article  MathSciNet  MATH  Google Scholar 

  • Karatzas I, Shreve SE (1987) Brownian motion and stochastic calculus. Springer, Berlin

    MATH  Google Scholar 

  • Kitamura Y (1997) Empirical likelihood methods with weakly dependent processes. Ann Stat 25:2084–2102

    Article  MathSciNet  MATH  Google Scholar 

  • Kitamura Y (2006) Empirical likelihood methods in econometrics: theory and practice. Unpublished Working Paper

  • Kitamura Y, Stutzer M (1997) An information-theoretic alternative to generalized method of moments estimation. Econometrica 65(5):861–874

    Article  MathSciNet  MATH  Google Scholar 

  • Kitamura Y, Otsu T, Evdokimov K (2013) Robustness, infinitesimal neighborhoods, and moment restrictions. Econometrica 81(3):1185–1201

    Article  MathSciNet  MATH  Google Scholar 

  • Kloeden P, Platen E (1992) Numerical solution of stochastic differential equations. Springer, Berlin

    Book  MATH  Google Scholar 

  • Lo AW (1988) Maximum likelihood estimation of generalized itô process with discretely sampled data. Econom Theory 4:231–247

    Article  Google Scholar 

  • Merton R (1971) Optimum consumption and portofolio rules in a continuos time model. J Econ Theory 3:373–413

    Article  MathSciNet  MATH  Google Scholar 

  • Merton RC (1973) The theory of rational option pricing. Bell J 4:141–183

    Article  MathSciNet  MATH  Google Scholar 

  • Milstein GN (1974) Aproximate integration of stochastic diferential equations. Theory Probab Appl 19:557–562

    MathSciNet  Google Scholar 

  • Newey W, McFadden D (1994) Handbook of econometrics, volume 4, chapter large sample estimation and hypothesis testing. Elsevier, Amsterdam

  • Newey W, Smith RJ (2004) High-order properties of gmm and generalized empirical likelihood estimators. Econometrica 72:219–255

    Article  MathSciNet  MATH  Google Scholar 

  • Newey WK, West KD (1987) A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55:703–708

    Article  MathSciNet  MATH  Google Scholar 

  • Owen A (1991) Empirical likelihood for linear models. Ann Stat 18(1):1725–1747

    Article  MathSciNet  MATH  Google Scholar 

  • Pedersen AR (1995) A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand J Stat 22:55–71

    MathSciNet  MATH  Google Scholar 

  • Prakasa Rao BLS (1999) Statistical inference for diffusion type process. Arnold, London

    Google Scholar 

  • Qin J, Lawless J (1994) Empirical likelihood and general estimating equations. Ann Stat 20(1):300–325

    Article  MathSciNet  MATH  Google Scholar 

  • Rogers LCG, Williams D (2000) Diffusions, Markov process and Martingales: volume 2 Itô calculus. Cambridge

  • Schennach S (2007) Point estimation with exponentially tilted empirical likelihood. Ann Stat 35(2):634–672

    Article  MathSciNet  MATH  Google Scholar 

  • Smith RJ (2001) Gel criteria for moment conditions models. Working paper, University of Bristol

  • Vasicek O (1977) An equilibrium characterization of the term structure. J Financ Econ 5:177–88

    Article  Google Scholar 

  • Xu K (2009) Empirical likelihood-based inference for nonparametric recurrent diffusions. J Econom 153:65–82

    Article  MathSciNet  Google Scholar 

  • Zhou H (2003) Itô conditional moment generator and the estimation of short rate processes. J Financ Econom 1:250–271

    Article  Google Scholar 

  • Zivot E, Wang J (2006) Modeling financial time series with S-PLUS, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the comments of the associate editor and the two anonymous referees. This research was partially supported by FAPESP and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio Poletti Laurini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurini, M.P., Hotta, L.K. Generalized moment estimation of stochastic differential equations. Comput Stat 31, 1169–1202 (2016). https://doi.org/10.1007/s00180-015-0598-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-015-0598-2

Keywords

Navigation