Nothing Special   »   [go: up one dir, main page]

Skip to main content

Parameter Estimation for Multivariate Nonlinear Stochastic Differential Equation Models: A Comparison Study

  • Chapter
  • First Online:
Statistical Modeling for Biological Systems

Abstract

Statistical methods have been proposed to estimate parameters in multivariate stochastic differential equations (SDEs) from discrete observations. In this paper, we propose a method to improve the performance of the local linearization method proposed by Shoji and Ozaki (Biometrika 85:240–243, 1998), i.e., to avoid the ill-conditioned problem in the computational algorithm. Simulation studies are performed to compare the new method to three other methods, the benchmark Euler method and methods due to Pedersen (1995) and to Hurn et al. (2003). Our results show that the new method performs the best when the sample size is large and the methods proposed by Pedersen and Hurn et al. perform better when the sample size is small. These results provide useful guidance for practitioners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aït-Sahalia, Y. (2007). Estimating continuous-time models with discretely sampled data. In R. Blundell, P. Torsten, & W. K. Newey (Eds.), Advances in Economics and Econometrics, Theory and Applications, Ninth World Congress. Econometric society monographs. New York: Cambridge University Press.

    Google Scholar 

  2. Aït-Sahalia, Y. (2008). Closed-form likelihood expansions for multivariate diffusions. Annals of Statistics, 36, 906–937.

    Article  MathSciNet  Google Scholar 

  3. Arkin, A., Ross, J., & McAdams, H. H. (1998). Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics, 149, 633–648.

    Google Scholar 

  4. Black, F., & Scholes, M. S. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–659.

    Article  MathSciNet  Google Scholar 

  5. Brandt, M., & Santa-Clara, P. (2002). Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets. Journal of Financial Economics, 63, 161–210.

    Article  Google Scholar 

  6. Carbonell, F., Jimenez, J. C., & Pedroso, L. M. (2008). Computing multiple integrals involving matrix exponentials. Journal of Computational and Applied Mathematics, 213, 300–305.

    Article  MathSciNet  Google Scholar 

  7. Cox, J. C., Ingersoll, J. E., & Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica, 53, 385–407.

    Article  MathSciNet  Google Scholar 

  8. Dalal, N., Greenhalgh, D., & Mao, X. (2008). A stochastic model for internal HIV dynamics. Journal of Mathematical Analysis and Applications, 341, 1084–1101.

    Article  MathSciNet  Google Scholar 

  9. Durham, G., & Gallant, A. (2002). Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. Journal of Business & Economic Statistics, 20, 297–316.

    Article  MathSciNet  Google Scholar 

  10. Fan, J., & Gijbels, I. (1996). Local polynomial modelling and its applications. London: Chapman and Hall.

    MATH  Google Scholar 

  11. Gillespie, D. T. (1992). A rigorous derivation of the chemical master equation. Physica A: Statistical Mechanics and its Applications, 188, 404–425.

    Article  Google Scholar 

  12. Hurn, A. S., & Jeisman, J. (2007). Seeing the wood for the trees: A critical evaluation of methods to estimate the parameters of stochastic differential equations. Journal of Financial Economics, 5, 390–455.

    Article  Google Scholar 

  13. Hurn, A. S., Lindsay, K. A., & Martin, V. I. (2003). On the efficacy of simulated maximum likelihood for estimating the parameters of stochastic differential equations. Journal of Time Series Analysis, 24, 43–63.

    Article  MathSciNet  Google Scholar 

  14. Jimenez, J. C., Biscay, R. J., & Ozaki, T. (2006). Inference methods for discretely observed continuous-time stochastic volatility models: A commented overview. Asia-Pacific Financial Markets, 12, 109–141.

    Article  Google Scholar 

  15. Jimenez, J. C., Shoji, I., & Ozaki, T. (1999). Simulation of stochastic differential equations through the local linearization method. A comparative study. Journal of Statistical Physics, 94, 587–602.

    Article  MathSciNet  Google Scholar 

  16. Kloeden, P., & Platen, E. (1992). Numerical solution of stochastic differential equations. Berlin: Springer.

    Book  Google Scholar 

  17. Moler, C. B., & Van Loan, C. F. (2003). Nineteen dubious methods for computing the matrix exponential, twenty-five years later. SIAM Review, 45, 3–49.

    Article  MathSciNet  Google Scholar 

  18. Nielsen, J. N., Madsen, H., & Young, P. C. (2000). Parameter estimation in stochastic differential equations: An overview. Annual Reviews in Control, 24, 83–94.

    Article  Google Scholar 

  19. Nowak, M. A., & May, R. M. (2000). Virus dynamics: Mathematical principles of immunology and virology. Oxford: Oxford University Press.

    MATH  Google Scholar 

  20. Pedersen, A. R. (1995). A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scandinavian Journal of Statistics, 22, 55–71.

    MathSciNet  MATH  Google Scholar 

  21. Perelson, A. S., & Nelson, P. W. (1999). Mathematical analysis of HIV-1 dynamics in vivo. SIAM Review, 41, 3–44.

    Article  MathSciNet  Google Scholar 

  22. Poulsen, R. (1999). Approximate maximum likelihood estimation of discretely observed diffusion processes. Working Paper report No. 29, Center for Analytical Finance, Aarhus.

    Google Scholar 

  23. Scott, D. W. (1992). Multivariate density estimation: Theory, practice and visualisation. New York: Wiley.

    Book  Google Scholar 

  24. Shoji, I., & Ozaki, T. (1997). Comparative study of estimation methods for continuous time stochastic processes. Journal of Time Series Analysis, 18, 485–506.

    Article  MathSciNet  Google Scholar 

  25. Shoji, I., & Ozaki, T. (1998). A statistical method of estimation and simulation for systems of stochastic differential equations. Biometrika, 85, 240–243.

    Article  MathSciNet  Google Scholar 

  26. Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman and Hall.

    Book  Google Scholar 

  27. Singer, H. (2002). Parameter estimation of nonlinear stochastic differential equations: Simulated maximum likelihood versus extended Kalman filter and Itô-Taylor expansion. Journal of Computational and Graphical Statistics, 11, 972–995.

    Article  MathSciNet  Google Scholar 

  28. Sørensen, H. (2004). Parametric inference for diffusion processes observed at discrete points in time: A survey. International Statistical Review, 72, 337–354.

    Article  Google Scholar 

  29. Tan, W. Y., & Wu, H. (2005). Deterministic and stochastic models of AIDS epidemics and HIV infections with intervention. Singapore: World Scientific.

    Book  Google Scholar 

  30. Van Loan, C. F. (1978). Computing integrals involving the matrix exponential. IEEE Transactions on Automatic Control, 23, 395–404.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the NIAID/NIH grants HHSN272201000055C and AI087135, and by two University of Rochester CTSI (UL1RR024160) pilot awards from the National Center for Research Resources of NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hulin Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gu, W., Wu, H., Xue, H. (2020). Parameter Estimation for Multivariate Nonlinear Stochastic Differential Equation Models: A Comparison Study. In: Almudevar, A., Oakes, D., Hall, J. (eds) Statistical Modeling for Biological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-34675-1_13

Download citation

Publish with us

Policies and ethics