Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Functional outlier detection with robust functional principal component analysis

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Functional principal component analysis is the preliminary step to represent the data in a lower dimensional space and to capture the main modes of variability of the data by means of small number of components which are linear combinations of original variables. Sensitivity of the variance and the covariance functions to irregular observations make this method vulnerable to outliers and may not capture the variation of the regular observations. In this study, we propose a robust functional principal component analysis to find the linear combinations of the original variables that contain most of the information, even if there are outliers and to flag functional outliers. We demonstrate the performance of the proposed method on an extensive simulation study and two datasets from chemometrics and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Billor N, Hadi AS, Velleman PF (2000) BACON: blocked adaptive computationally efficient outlier nominators. Comput Stat Data Anal 34: 279–298

    Article  MATH  Google Scholar 

  • Billor N, Kiral G, Turkmen A (2005) Outlier detection using principal components. In: Twelfth international conference on statistics, combinatorics, mathematics and applications, Auburn (unpublished manuscript)

  • Craven P, Wahba G (1979) Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numerische Mathematik 31: 377–403

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho DL (1982) Breakdown properties of multivariate location estimators. Ph.D. Qualifying paper, Harvard University

  • Esbensen KH, Schüonkopf S, Midtgaard T (1994) Multivariate analysis in practice. Camo, Trondheim

    Google Scholar 

  • Febrero M, Galeano P, Gonzales-Mantegia W (2007) A functional analysis of NOx levels: location and scale estimation and outlier detection. Comput Stat 22: 411–427

    Article  MATH  Google Scholar 

  • Febrero M, Galeano P, Gonzales-Mantegia W (2008) Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels. Environmetrics 19: 331–345

    Article  MathSciNet  Google Scholar 

  • Fraiman R, Muniz G (2001) Trimmed means for functional data. Test 10: 419–440

    Article  MathSciNet  MATH  Google Scholar 

  • Gervini D (2009) Detecting and handling outlying trajectories in irregularly sampled functional datasets. Ann Appl Stat 3: 1758–1775

    Article  MathSciNet  MATH  Google Scholar 

  • Hubert M, Rousseeuw PJ, Branden KV (2005) ROBPCA: a new approach to robust principal component analysis. Technometrics 47(1): 64–79

    Article  MathSciNet  Google Scholar 

  • Hyndman RJ, Ullah MDS (2007) Robust forecasting of mortality and fertility rates: a functional data approach. Comput Stat Data Anal 51: 4942–4956

    Article  MATH  Google Scholar 

  • Locantore N, Marron JS, Simpson DG, Tripoli N, Zhang JT, Cohen KL (1999) Robust principal component analysis for functional data. Test 8(1): 1–73

    Article  MathSciNet  MATH  Google Scholar 

  • Ramsay JO, Silverman BW (2001) Functional data analysis software. MATLAB edition. Online at http://www.psych.mcgill.ca/faculty/ramsay/software.html

  • Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Rousseeuw PJ, Van Driessen K (1999) A fast algorithm for the minimum covariance determinant estimator. Technometrics 41: 212–223

    Article  Google Scholar 

  • Stahel WA (1981) Robust estimation: infinitesimal optimality and covariance matrix Estimators, Ph.D. thesis, ETH, Zürich

  • Verboven S, Hubert M (2004) A Matlab library for robust analysis. Chem Intell Lab Syst 75: 127–136

    Article  Google Scholar 

  • Yamanishi Y, Tanaka Y (2005) Sensitivity analysis in functional principal component analysis. Comput Stat 20: 311–326

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nedret Billor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawant, P., Billor, N. & Shin, H. Functional outlier detection with robust functional principal component analysis. Comput Stat 27, 83–102 (2012). https://doi.org/10.1007/s00180-011-0239-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-011-0239-3

Keywords

Navigation