Abstract
A method for exploring the structure of populations of complex objects, such as images, is considered. The objects are summarized by feature vectors. The statistical backbone is Principal Component Analysis in the space of feature vectors. Visual insights come from representing the results in the original data space. In an ophthalmological example, endemic outliers motivate the development of a bounded influence approach to PCA.
Similar content being viewed by others
References
Born, M. and E. Wolf (1980).Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Pergamon Press, New York.
Cootes, T. F., A. Hill, C.J. Taylor and J. Haslam (1993). The use of active shape models for locating structures in medical images.Information Processing in Medical Imaging (H.H. Barret and A.F. Gmitro, eds.) Lecture Notes in Computer Science, vol. 687. Springer Verlag, Berlin, 33–47.
Devijver, P. A. and J. Kittler (1982).Pattern Recognition: A Statistical Approach. Prentice Hall, London.
Dryden, I.L. and K.V. Mardia (1998).Statistical Shape Analysis. Wiley: New York.
Fan, J. and S.K. Lin (1998). Test of significance when the data are curves.Journal of the American Statistical Association,93, 1007–1021.
Gower, J.C. (1974). The mediancentre.Applied Statistics,23, 466–470.
Haldane, J.B.S. (1948). Note on the median of a multivariate distribution.biometrika,35, 414–415.
Hampel, F.R., E.M. Ronchetti, P.J. Rousseeuw and W.A. Stahel (1986).Robust Statistics: The Approach Based on Influence Functions Wiley, New York.
Huber, P.J. (1981).Robust Statistics. Wiley, New York.
Inselberg, A. (1985). The plane with parallel coordinates.The Visual Computer,1, 69–91.
Kelemen, A., G. Szekely and G. Gerig (1997). Three dimensional model-based segmentation. TR-178 Technical Report Image Science Lab, ETH Zurich.
Milasevic, P. and G.R. Ducharme (1987). Uniqueness of the spatial median.Annals of Statistics,15, 1332–1333.
Ramsay, J. O. and B.W. Silverman (1997).Functional Data Analysis. Springer Verlag, New York.
Rousseeuw, P.J. and A.M. Leroy (1987).Robust Regression and Outlier Detection. Wiley, New York.
Small, G.C. (1990). A survey of multidimensional medians.International Statistical Review,58, 263–277.
Staudte, R.G. and S.J. Sheather (1990).Robust Estimation and Testing, Wiley, New York.
Schwiegerling, J., J.E. Greivenkamp and J.M. Miller (1995). Representation of videokeratoscopic height data with Zernike polynomials.Journal of the Optical Society of America, A,12, 12105–2113.
Wegman, E.J. (1990). Hyperdimensional data analysis using parallel coordinates.Journal of the American Statistical Association,85, 664–675.
References
Besse, P. and J.O. Ramsay (1986). Principal component analysis of sampled functions.Psychometrika,51, 285–311.
Boente, G. and R. Fraiman (1998). Kernel-based functional principal components. Unpublished Manuscript.
Dauxois, J., A. Pousse and Y. Romain (1982). Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference.Journal of Multivariate Analysis,12, 136–154.
Pezzulli, S.D. and B.W. Silverman (1993). Some properties of smoothed principal components analysis for functional data.Computational Statistics and Data Analysis,8, 1–16.
Ramsay, J.O. and C.J. Dalzell (1991). Some tools for functional data analysis (with discussion).Journal of the Royal Statistics Society, B,53, 539–572.
Ramsay, J.O. and B.W. Silverman (1997).Functional Data Analysis. Springer Series in Statistics, Springer-Verlag, New York.
Rice, J. and B.W. Silverman (1991). Estimating the mean and covariance structure nonparametrically when the data are curves.Journal of the Royal Statistics Society, B,53, 233–243.
Silverman, B.W. (1996). Smoothed functional principal components analysis by choice of norm.Anals of Statistics,24, 1–24.
Tyler, D. (1991). Some issues in the robust estimation of multivariate location and scatter. InDirections in Robust Statistics and Diagnostics (W. Stahel and S. Weisberg eds.) Springer Verlag, New York, 327–336.
References
Brumback, B.A. and J.A. Rice (1998). Smoothing spline models for the analysis of nested and crossed samples of curves (with discussion).Journal of the American Statistical Association,93, 961–994.
Rice, J.A. and B.W. Silverman (1991). Estimating the mean and covariance structure nonparametrically when the data are curves.Journal of the Royal Statistical Society, B,53, 233–243.
Silverman, B.W. (1996). Smoothed functional principal components analysis by choice of norm.Annals of Statistics,24, 1–24.
References
Bedall, F.K. and H. Zimmermann (1979). Algorithm AS 143. The mediancentre.Applied Statistics,28, 325–328.
Critchley, F. (1985). Influence in principal component analysis.Biometrika,72, 627–636.
Croux, C. and G. Haesbroeck (1999). Principal component analysis based on robust estimators of the covariance or correlation matrix: influence functions and efficiencies. Preprint, University of Brussels (ULB), http://www.sig.eggs.ulg.ac.be/Haesbroeck/
Devlin, S.J., R. Guanadesikan and J.R. Kettenring (1981). Robust estimation of dispersion matrices and principal components.Journal of the American Statistical Association,76, 354–362.
Hössjer, O. and C. Croux (1995). Generalizing univariate signed rank statistics for testing and estimating a multivariate location parameter.Nonparametric Statistics,4, 293–308.
Li, G. and Z. Chen (1985). Projection-pursuit approach to robust dispersion matrices and principal components: primary theory and Monte Carlo.Journal of the American Statistical Association,80, 759–766.
References
Fan, J. and S.K. Lin (1998). Test of significance when the data are curves.Journal of the American Statistical Association,93, 1007–1021.
Liu, R.Y. and K. Singh (1992). Ordering directional data: concepts of data depth on circles and spheres.Annals of Statistics,20, 1468–1484.
Rice, J.A. and B.W. Silverman (1991). Estimating the mean and covariance structure nonparametrically when the data are curves.Journal of the Royal Statistical Society, B,53, 233–243.
References
Bosq, D. (1991). Modelization, non-parametric estimation and prediction for continuous time processes.NATO, ASI Series, Springer Verlag, New York.
Kneip, A. (1994). Nonparametric estimation of common regressors for similar curve data.Annals of Statistics,22, 1386–1428.
Kneip, A. and T. Gasser (1992). Statistical tools to analyze data representing a sample of curves.Annals of Statistics,20, 1266–1305.
Kneip, A., X. Li, B. MacGibbon and J.O. Ramsay (1998). Curve registration by local regression.Canadian Journal of Statistics, to appear.
Kneip, A. and K. Utikal (1999). Inference for density families using functional principal component analysis. Manuscript.
Ramsay, J.O. and X. Li (1996). Curve registration.Journal of the Royal Statistical Society, to appear.
Ramsay, J. O. and B.W. Silverman (1997).Functional Data Analysis, Springer Verlag, New York.
Silverman, B.W. (1995). Incorporating parametric effects into functional principal component analysis.Journal of the Royal Statistical Society B,57, 673–689.
Wang, K. and T. Gasser (1995). Alignment of curves by dynamic time warping.Biometrics,14, 1–17.
References
Brown, B.M. (1983). Statistical use of the spatial median.Journal of the Royal Statistical Society, B,45, 25–30.
Chaudhuri, P. (1996). On a geometric notion of quantiles for multivariate data.Journal of the American Statistical Association,91, 862–872.
Marden, J.I. (1999). Some robust estimates of principal components.Statistics and Probability Letters,43 (to appear).
Visuri, S., V. Koivunen, H. and Oja (1999). Sign and rank covariance matrices.
References
Bennett, R.J. (1979).Spatial Time Series. Chapman and Hall.
Donoho, D.L. (1982). Breakdown Properties of Multivariate Location Estimators. Ph.D. qualifying paper, Harvard University, Department of Statistics.
Droesbeke, F. (ed.) (1987).Spatial Processes and Spatial Time Series Analysis. Facultes Universitaires Saint-Louis.
Fan, J. and S.K. Lin (1998). Test of significance when the data are curves.Journal of the American Statistical Association,93, 1007–1021.
Huber, P.J. (1985). Projection pursuit.Annals of Statistics,13, 435–475.
Jones, M.C. and R. Sibson (1987). What is projection pursuit?.Journal of the Royal Statistical Society, A,150, 1–36.
Peña, D. and F.J. Prieto (1997). Robust covariance matrix estimation and multivariate outlier detection. Working Paper WP97-08, Universidad Carlos III de Madrid.
Piccolo, D. (1990). A distance measure for classifying ARIMA models.Journal of Time Series Analysis,11, 153–164.
Stahel, W.A. (1981). Robuste Schätzungen: Infinitesimale Optimalität und Schätzungen von Kovarianzmatrizen. Ph.D. Thesis, ETH Zurich.
References
Brumback, B. and J. Rice (1998). Smoothing spline models for the analysis of nested and crossed samples of curves (with discussion).Journal of the American Statistical Association,93, 961–994.
References
Aguilera, A. M., R. Gutiérrez and M.J. Valderrama (1996). Approximation of estimators in the PCA of a stochastic process using B-splines.Communications in Statistics: Simulation and Computation,25, 671–690.
Aguilera, A.M., F.A. Ocaña and M.J. Valderrama (1999). Principal component analysis of Hilbertian random variables on finite-dimensional spaces. Technical Report 02/99, Department of Statistics and Operations Research, University of Granada.
Croux, C. and A. Ruiz-Gazen (1996). A fast algorithm for robust principal components based on projection pursuit.Proceedings in Computational Statistics 1996, (A. Prat, ed.) Barcelona, Spain, 211–216.
Ruiz, M.D. and M.J. Valderrama (1997). Orthogonal representations of random fields and an application to geophysies data.Journal of Applied Probability,34, 458–476.
References
Carroll, R.J., D. Ruppert and L.A. Stefanski (1995).Measurement, Error in Nonlinear Models, Chapman and Hall, London.
Good, I.J. (1969). Some applications of the singular value decomposition of a matrix.Technometrics,11, 823–831.
He, X. and D.G. Simpson (1992). Robust direction estimation.Annals of Statistics,20, 351–369.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Locantore, N., Marron, J.S., Simpson, D.G. et al. Robust principal component analysis for functional data. Test 8, 1–73 (1999). https://doi.org/10.1007/BF02595862
Issue Date:
DOI: https://doi.org/10.1007/BF02595862
Key words
- cornea curvature maps
- functional data
- principal components analysis
- robust statistics
- spherical PCA
- Zernike basis