Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Some existence results for solutions of generalized vector quasi-equilibrium problems

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we consider more general forms of generalized vector quasi-equilibrium problems for multivalued maps which include many known vector quasi-equilibrium problems and generalized vector quasi-variational inequality problems as special cases. We establish some existence results for solutions of these problems under pseudomonotonicity and u-hemicontinuity/ℓ-hemicontinuity assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansari QH, Flores-Bazán F (2003) Generalized vector quasi-equilibrium problems. J Math Anal Appl 277:246–256

    Article  MathSciNet  Google Scholar 

  • Ansari QH, Yao JC (1999) On strong solutions of the generalized implicit vector variational problem. Adv Nonlinear Variational Inequalitries 2(1):1–10

    MATH  MathSciNet  Google Scholar 

  • Ansari QH, Yao JC (2003) Generalized vector equilibrium problems. J Stat Manage Syst 5(1–3):1–17

    Google Scholar 

  • Ansari QH, Yao JC (2003) On vector quasi-equilibrium problems. In: Daniele P, Giannessi F, Maugeri A (eds) Equilibrium problems and variational models. Kluwer, Dordrecht, pp 1–18

    Google Scholar 

  • Bianch M, Schaible S (1996) Generalized monotone bifunctions and equilibrium problems. J Optim Theory Appl 90:31–43

    Article  MathSciNet  Google Scholar 

  • Bianch M, Hadjisavvas N, Schaible S (1997) Vector equilibrium problems with generalized monotone bifunctions. J Optim Theory Appl 92:527–542

    Article  MathSciNet  Google Scholar 

  • Blum E, Oettli W (1994) From optimization and variational inequalities to equilibrium problems. Math Stud 63:123–145

    MATH  MathSciNet  Google Scholar 

  • Chen GY, Goh CJ, Yang XQ (2001) Existence of solution for generalized vector variational inequalities. Optimization 50:1–15

    MATH  MathSciNet  Google Scholar 

  • Chiang Y, Chadli O, Yao JC (2003) Generalized vector equilibrium problems with trifunctions. J Global Optim:1–20

  • Ding XP, Tarafdar E (2000) Generalized vector variational-like inequalities without monotonicity. In: Giannessi F (ed) Vector variational inequalities and vector equilibria: mathematical theories. Kluwer, Dordrecht, pp 113–124

    Google Scholar 

  • Flores-Bazan F (2000) Existence theorems for generalized noncoercive equilibrium problems: the quasiconvex case. SIAM J Optim 11:675–690

    Article  MATH  MathSciNet  Google Scholar 

  • Flores-Bazan F, Flores-Bazan F (2003) Vector equilibrium problems under asymptotic analysis. J Global Optim 26(2):141–166

    Article  MATH  MathSciNet  Google Scholar 

  • Fu JY, Wan AH (2002) Generalized vector equilibria problems with set-valued mappings. Math Methods Oper Res 56:259–268

    Article  MATH  MathSciNet  Google Scholar 

  • Giannessi F (1980) Theorems of the alternative, quadratic programs and complementarity problems. In: Cottle RW, Giannessi F, Lions JL (eds) Variational inequalities and complementarity problems. Wiley, New York, pp 151–186

    Google Scholar 

  • Giannessi F (ed) (2000) Vector variational inequalities and vector equilibria. Mathematical theories. Kluwer, Dordrecht, Boston, London

    MATH  Google Scholar 

  • Hadijisavvas N, Schaible S (1998) From scalar to vector equilibrium problems in the quasi-monotone case. J Optim Theory Appl 96:297–309

    Article  MathSciNet  Google Scholar 

  • Hou SH, Yu H, Chen GY (2003) On vector quasi-equilibrium problems with set-valued maps. J Optim Theory Appl 119:485–498

    Article  MATH  MathSciNet  Google Scholar 

  • Khanh PQ, Luu LM (2005) Some existence results for vector quasi-variational inequalities involving multifunctions and applications to traffic equilibrium problems. J Global Optim 32:551–568

    Article  MATH  MathSciNet  Google Scholar 

  • Konnov IV, Yao JC (1999) Existence of solutions for generalized vector equilibrium problems. J Math Anal Appl 233, 328–335

    Article  MATH  MathSciNet  Google Scholar 

  • Lee GM (2000) On relations between vector varitional inequality and vector optimization problems. In: Yang XQ, Mees AI, Fisher ME, Jennings LS (eds) Progress in optimization. Kluwer, Dordrecht, pp 167–179

    Google Scholar 

  • Lin LJ (2005) Existence results for prime and dual generalized vector equilibrium problems with applications to generalized semi-infinite programming. J Global Optim 33:579–595

    Article  MATH  MathSciNet  Google Scholar 

  • Lin LJ, Park S (1998) On some generalized quasi-equilibrium problems. J Math Anal Appl 224:167–181

    Article  MATH  MathSciNet  Google Scholar 

  • Lin LJ, Yu ZT (2001) On some equilibrium problems for multimaps. J Comput Appl Math 129:171–183

    Article  MATH  MathSciNet  Google Scholar 

  • Lin LJ, Yu ZT, Ansari QH, Lai LP (2003) Fixed point and maximal element theorems with applications to abstract economies and minimax inequalities. J Math Anal Appl 284:656–671

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai-Jiu Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, LJ., Ansari, Q.H. & Huang, YJ. Some existence results for solutions of generalized vector quasi-equilibrium problems. Math Meth Oper Res 65, 85–98 (2007). https://doi.org/10.1007/s00186-006-0102-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-006-0102-4

Keywords

Mathematics Subject Classification (2000)

Navigation