Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On Generalized Quasi-Vector Equilibrium Problems via Scalarization Method

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider the nonlinear scalarization function in the setting of topological vector spaces and present some properties of it. Moreover, using the nonlinear scalarization function and Fan–Glicksberg–Kakutani’s fixed point theorem, we obtain an existence result of a solution for a generalized vector quasi-equilibrium problem without using any monotonicity and upper semi-continuity (or continuity) on the given maps. Our result can be considered as an improvement of the known corresponding result. After that, we introduce a system of generalized vector quasi-equilibrium problem which contains Nash equilibrium and Debreu-type equilibrium problem as well as the system of vector equilibrium problem posed previously. We provide two existence theorems for a solution of a system of generalized vector quasi-equilibrium problem. In the first one, our multi-valued maps have closed graphs and the maps are continuous, while in the second one, we do not use any continuity on the maps. Moreover, the method used for the existence theorem of a solution of a system of generalized vector quasi-equilibrium problem is not based upon a maximal element theorem. Finally, as an application, we apply the main results to study a system of vector optimization problem and vector variational inequality problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fan, K.: A minimax inequality and applications. In: Shisha, O. (ed.) Inequality III, 103–113. Academic Press, New York (1972)

    Google Scholar 

  2. Brezis, H., Nirenberg, L., Stampacchia, G.: A remark on Ky Fan’s minimax principle. Boll. Unione Mat. Ital. 6(4), 293–300 (1972) (English, with Italian summary)

  3. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1993)

    MathSciNet  Google Scholar 

  4. Noor, M.A., Oettli, W.: On generalized nonlinear complementarity problems and quasi equilibria. Le Math. 49, 313–331 (1994)

    MathSciNet  MATH  Google Scholar 

  5. Bianchi, M., Pini, R.: Coercivity conditions for equilibrium problems. J. Optim. Theory Appl. 124, 79–92 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Giannessi, F.: Theorem of alternative, quadratic programs, and complementarity problems. In: Cottle, R.W., Giannessi, F., Lions, J.L. (eds.) Variational Inequalities and Complementarity Problems, pp. 151–186. Wiley, New York (1980)

    Google Scholar 

  7. Chen, G.Y., Cheng, G.M.: Vector variational inequality and vector optimization. In: Sawaragi, Y., Inoue, K., Nakayama, H. (eds.) Toward Interactive and Intelligent Decision Support Systems. Lecture Notes in Economics and Mathematical Systems, vol. 285, pp. 408–416. Springer (1987)

  8. Chen, G.Y., Huang, X.X., Yang, X.Q.: Vector Optimization: Multi-Valued and Variational Analysis. Springer, Berlin (2005)

    Google Scholar 

  9. Ansari, Q.H., Schaible, S., Yao, J.C.: System of vector equilibrium problems and its applications. J. Optim. Theory Appl. 107(3), 547–557 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, G.Y., Yang, X.Q., Yu, H.: A nonlinear scalarization function and generalized quasi-vector equilibrium problems. J. Glob. Optim. 32, 451–466 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kien, B.T., Huy, N.Q., Wong, N.C.: On the solution existence of generalized vector quasi-equilibrium problems with discontinuous multifunctions. Taiwanesse J. Math. 13(2B), 757–775 (2009)

  12. Patriche, M.: New results on systems of generalized vector quasi-equilibrium problems. arXiv:1306.6492v1 [math.OC] 27 Jun 2013

  13. Plubtieng, S., Sitthithakerngkiet, K.: Existence result of generalized vector quasiequilibrium problems in locally G-convex spaces. Fixed Point Theory Appl. doi:10.1155/2011/967515

  14. Fan, K.: Fixed-point and minimax theorems in locally convex topological linear spaces. Proc. Natl. Acad. Sci. USA 38(2), 121–126 (1952). doi:10.1073/pnas.38.2.121

    Article  MATH  Google Scholar 

  15. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1988)

    Google Scholar 

  16. Gerth (Tammer), Chr, Weidner, P.: Nonconvex separation theorem and some application in vector optimization. J. Optim. Theory Appl. 67, 297–320 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, G.Y., Yang, X.Q.: Characterization of variable domination structure via a nonlinear scalraziation. J. Optim. Theory. Appl. 112, 97–110 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yannelis, N.C., Prabhakar, N.D.: Existence of maximal elements and equilibria in linear topological spaces. J. Math. Econ. 12, 233–245 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Luc, D.L.: Theory of vector optimization. Lecture Notes in Economics and Mathematical Systems, 319, Springer, Berlin (1989)

  20. Sach, P.H., Lin, L.J., Tuan, L.A.: Generalized vector quasivariational inclusion problems with moving cones. J. Optim. Theory Appl. 147, 607–620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Aubin, J.P., Ekelend, I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  22. Nash, J.F.: Non-cooperative games. Ann. Math. 54, 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nash, J.F.: Two-person cooperative games. Econometrica 21, 128–140 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  24. Debreu, G.: A social equilibrium existence theorem. Proc. Natl. Acad. Sci. USA 38, 886–893 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, L.J., Ansari, Q.H.: Systems of quasi-variational relations with applications. Nonlinear Anal. 72, 1210–1220 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Inoan, D.: Factorization of quasi-variational relations systems. arXiv:1306.0143v1 [math.OC] (2013)

  27. Lin, L.J., Tu, C.I.: The studies of systems of variational inclusion problems and variational disclusions problems with applications. Nonlinear Anal. 69, 1981–1998 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Luc, D.T.: An abstract problem in variational analysis. J. Optim. Theory. Appl. 138, 65–76 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hai, N.X., Khanh, P.Q.: Systems of set-valued quasivariational inclusion problems. J. Optim. Theory Appl. 135, 55–67 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fan, K.: Some properties of convex sets related to fixed point theorems. Math. Ann. 266, 519–537 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ding, X.-P.: Systems of generalized vector quasi-variational inclusions and systems of generalized vector quasi-optimization problems in locally FC-uniform spaces. Appl. Math. Mech. Engl. Ed. 30(3), 263–274 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Soo Lee.

Ethics declarations

Conflicts of interest

None.

Ethical standard

The research does not involve human participants and animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farajzadeh, A., Lee, B.S. & Plubteing, S. On Generalized Quasi-Vector Equilibrium Problems via Scalarization Method. J Optim Theory Appl 168, 584–599 (2016). https://doi.org/10.1007/s10957-015-0772-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0772-2

Keywords

Mathematics Subject Classification

Navigation