Abstract
Reflectance Transformation Imaging is a recent technique allowing for the measurement and the modeling of one of the most influential parameters on the appearance of a surface, namely the angular reflectance, thanks to the change in the direction of the lighting during acquisition. From these photometric stereo images (discrete data), the angular reflectance is modeled to allow both interactive and continuous relighting of the inspected surface. Two families of functions, based on polynomials and on hemispherical harmonics, are cited and used in the literature at this aim, respectively, associated to the PTM and HSH techniques. In this paper, we propose a novel method called Discrete Modal Decomposition (DMD) based on a particular and appropriate Eigen basis derived from a structural dynamic problem. The performance of the proposed method is compared with the PTM and HSH results on three real surfaces showing different reflection behaviors. Comparisons are made in terms of both visual rendering and of statistical error (local and global). The obtained results show that the DMD is more efficient in that it allows for a more accurate modeling of the angular reflectance when light–matter interaction is complex such as the presence of shadows, specularities and inter-reflections.
Similar content being viewed by others
References
Béland, M.-C., Bennett, J.M.: Effect of local microroughness on the gloss uniformity of printed paper surfaces. Appl. Opt. 39, 2719–2726 (2000)
Simonot, L., Elias, M.: Color change due to surface state modification. Color Res. Appl. 28(1), 45–49 (2002)
Briones, V., Aguilera, J.M., Brown, C.A.: Effect of surface topography on color and gloss of chocolate samples. J. Food Eng. 77(4), 776–783 (2006)
Le Goïc, G., Bigerelle, M., Samper, S., Favreliere, H., Pillet, M.: Multiscale roughness analysis of engineering surfaces: a comparison of methods for the investigation of functional correlations. Mech. Syst. Signal Process. 66, 437–457 (2016)
Nicodemus, F.E.: Directional reflectance and emissivity of an opaque surface. Appl. Opt. 4(7), 1–8 (1965)
Nicodemus, F.E., Richmond, J.C., Hsia, J.J., Ginsberg, I.W., Limperis, T.: Geometrical considerations and nomenclature for Reflectance. Institute for Basic Standards, National Bureau of Standards, Washington (1977)
Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18(1), 1–34 (1999)
Müller, G., Meseth, J., Sattler, M., Sarlette, R., Klein, R.: Acquisition, synthesis, and rendering of bidirectional texture functions. Comput. Graph. Forum 24, 83–109 (2005)
Filip, J., Haindl, M.: Bidirectional texture function modeling: a state of the art survey. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 1921–1940 (2009)
Malzbender, T., Gelb, D., Wolters, H.: Polynomial texture maps. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 519–528 (2001)
Malzbender, T., Gelb, D.G.: Apparatus for and method of enhancing shape perception with parametric texture maps. US Patent Office (2000)
Malzbender, T.: Direction-dependent texture maps in a graphics system. US Patent Office (2001)
Malassiotis, S., Strintzis, M.G.: Stereo vision system for precision dimensional inspection of 3D holes. Mach. Vis. Appl. 15(2), 101–113 (2003)
Angelopoulou, M.E., Petrou, M.: Evaluating the effect of diffuse light on photometric stereo reconstruction. Mach. Vis. Appl. 25(1), 199–210 (2014)
Gautron, P., Krivanek, J., Pattanaik, S.N., Bouatouch, K.: A novel hemispherical basis for accurate and efficient rendering. In: Eurographics Symposium on Rendering 2004 (2004)
Westin, S.H., Arvo, J.R., Torrance, K.E.: Predicting reflectance functions from complex surfaces. Ph.D. thesis, Faculty of the Graduate School of Cornell University, New York, USA (1992)
MacDonald, L.W.: Colour and directionality in surface reflectance. In: Proc. Conf. on Artificial Intelligence and the Simulation of Behaviour (AISB) (2014)
Murray-Coleman, J.F., Smith, A.M.: The automated measurement of BRDFs and their application to luminaire modeling. J. Illum. Eng. Soc. 19(1), 87–99 (1990)
Obein, G., Ouarets, S., Ged, G.: Evaluation of the shape of the specular peak for high glossy surfaces. IS&T/SPIE Electron. Imaging 9018, 901805 (2014)
Le Breton, R., Ged, G., Obein, G.: Out of plane BRDF measurement at LNE-CNAM using Condor, our primary goniospectrophotometer. In: Proceedings of the 28th Session of the CIE (Manchester), pp. 1401–1407 (2015)
Blinn, J.F.: Models of light reflection for computer synthesized pictures. ACM SIGGRAPH Comput. Graph. 11, 192–198 (1977)
Lafortune, E.P.F., Foo, S.-C., Torrance, K.E., Greenberg, D. P.: Non-linear approximation of reflectance functions. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (1997)
Ward, G.J., Ward, G.J.: Measuring and modeling anisotropic reflection. ACM SIGGRAPH Comput. Graph. 26, 265–272 (1992)
Schröder, P., Sweldens, W.: Spherical wavelets: texture processing. In: Rendering Techniques’ 95, pp. 252–263. Springer, Vienna (1995)
Koenderink, J.J., van Doorn, A.J., Stavridi, M.: Bidirectional reflection distribution function expressed in terms of surface scattering modes. In: Computer Vision—ECCV ’96, Berlin. Springer, Berlin (1996)
Cook, R.L., Torrance, K.E.: A reflectance model for computer graphics. ACM Trans. Graph. (TOG) 1, 7–24 (1982)
Oren, M., Nayar, S. K.: Generalization of Lambert’s reflectance model. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 239–246 (1994)
Beckmann, P., Spizzichino, A.: The Scattering of Electromagnetic Waves from Rough Surfaces. Artech House on Demand, London (1987)
He, X.D., Torrance, K.E., Sillion, F.X., Greenberg, D.P.: A comprehensive physical model for light reflection. ACM SIGGRAPH Comput. Graph. 25, 175–186 (1991)
Kotani, K., Tachino, R., Terado, I., Kenmochi, Y.: Reflection and transparency model of rose petals for computer graphics based on the micro-scopic scale structures. In: 6th International Conference on Image Processing (ICIP’99), vol. 3, pp. 593–596. IEEE (1999)
Berthier, S.: Photonique des Morphos. Springer, Paris (2010)
Veach, E., Guibas, L.J.: Metropolis Light Transport. ACM Press/Addison-Wesley Publishing Co., New York (1997)
Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A Practical Model for Subsurface Light Transport. ACM, New York (2001)
Wang, J., Dong, Y., Tong, X., Lin, Z., Guo, B., Wang, J., Dong, Y., Tong, X., Lin, Z., Guo, B.: Kernel Nyström Method for Light Transport, vol. 28. ACM, New York (2009)
MacDonald, L.W.: Visualising an Egyptian artefact in 3D: comparing RTI with laser scanning. In: Proceedings of the 2011 International Conference on Electronic Visualisation and the Arts EVA’11 (2011)
Zhang, M., Drew, M.S.: Efficient robust image interpolation and surface properties using polynomial texture mapping. EURASIP J. Image Video Process. 2014(1), 1–19 (2014)
Drew, M.S., Hajari, N., Hel-Or, Y., Malzbender, T.: Specularity and Shadow Interpolation via Robust Polynomial Texture Maps, pp. 114.1–114.11. Citeseer, London (2009)
Proença, A.J.: RTI-based techniques and tools for digital surrogates. Ph.D. thesis, Université du Minho (Portugal) (2009)
Earl, G., Martinez, K.: Archaeological applications of polynomial texture mapping: analysis, conservation and representation. J. Archaeol. Sci. 37(8), 2040–2050 (2010)
Duffy, S.B.: Multi-Light Imaging for Heritage Applications. English Heritage, Swindon (2013)
Newman, S.E.: Applications of reflectance transformation imaging (RTI) to the study of bone surface modifications. J. Archaeol. Sci. 53, 536–549 (2015)
Durou, J.D.: Shape from shading—Eclairages, réflexions et perspectives. Rapport d’Habilitation à Diriger des Recherches (2007)
Raj, A., Adelson, E.H., Johnson, M.K., Cole, F.: Microgeometry Capture Using an Elastomeric Sensor. ACM, New York (2011)
Malzbender, T., Gelb, D.: Polynomial Texture Map (. ptm) File Format. Tech. rep., Hewlett-Packard (2001)
Kautz, J., Sloan, P.P., Snyder, J.: Fast, arbitrary BRDF shading for low-frequency lighting using spherical harmonics. In: Proceedings of the 13th Eurographics Workshop on Rendering (2002)
Mudge, M., Malzbender, T., Chalmers, A., Scopigno, R.: Image-based empirical information acquisition, scientific reliability, and long-term digital preservation for the natural sciences and cultural heritage. In: Eurographics, (Crete), pp. 2040–2050 (2008)
Krivanek, J., Ferwerda, J.A., Bala, K.: Effects of global illumination approximations on material appearance. ACM Trans. Graph. (TOG) 29(4), 1 (2010)
Palma, G., Corsini, M., Cignoni, P.: Dynamic shading enhancement for reflectance transformation imaging. J. Comput. Cult. Herit. 3, 6 (2010)
Favreliere, H.: Modal tolerancing : from metrology to specifications. Ph.D. thesis, Annecy (2009)
Samper, S., Adragna, P.A., Favreliere, H.: Modeling of 2d and 3d assemblies taking into account form errors of plane surfaces. J. Comput. Inf. Sci. Eng. 9(4), 041005 (2009)
Le Goïc, G., Favreliere, H., Samper, S., Formosa, F.: Multi scale modal decomposition of primary form, waviness and roughness of surfaces. Scanning 33(5), 332–341 (2011)
Grandjean, J., Le Goic, G., Favreliere, H., Ledoux, Y., Samper, S., Formosa, F., Devun, L., Gradel, T.: Multi-scalar analysis of hip implant components using modal decomposition. Meas. Sci. Technol. 24(1), 125702 (2012)
Pottier, T., Louche, H., Samper, S., Favreliere, H., Toussaint, F., Vacher, P.: A new filtering approach dedicated to heat sources computation from thermal field measurements. In: PhotoMechanics Conference, pp. 1–4 (2013)
Pottier, T., Louche, H., Samper, S., Favreliere, H., Toussaint, F., Vacher, P.: Proposition of a modal filtering method to enhance heat source computation within heterogeneous thermomechanical problems. Int. J. Eng. Sci. 81, 163–176 (2014)
Degrigny, C., Piqué, F., Papiashvili, N., Guery, J., Mansouri, A., Le Goïc, G., Detalle, V., Martos-Levif, D., Mounier, A., Wefers, S., Tedeschi, C., Cucchi, M., Vallet, J.-M., Pamart, A., Pinette, M.: Technical study of Germolles’ wall paintings: the input of imaging technique. Virtual Archaeol. Rev. 7, 1–8 (2016)
Lorenzetto, G.P.: Image comparison metrics: a review. Tech. rep. (1998)
Wang, Z., Bovik, A.C., Simoncelli, E.P.: Structural approaches to image quality assessment. In: Handbook of Image and Video Processing, pp. 961–974. Elsevier (2005)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)
Nishida, S., Shinya, M.: Use of image-based information in judgments of surface-reflectance properties. JOSA A 15, 2951–2965 (1998)
Sharan, L., Li, Y., Motoyoshi, I., Nishida, S., Adelson, E.H.: Image statistics for surface reflectance perception. JOSA A 25, 846–865 (2008)
Acknowledgements
This work was supported by the partners of the MeSurA project (Measuring Surface Appearance): the centre technique de l’industrie et du décolletage (CETIM-CTDEC), the centre technique du comité Francéclat (CETEHOR), the société OPTO France, and the conseil départemental de Haute-Savoie. Authors would also like to thank the cultural and scientific project at Château de Germolles, supported by DRAC-Bourgogne and EU COST Action TD 1201, COSCH (http://www.cosch.info).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pitard, G., Le Goïc, G., Mansouri, A. et al. Discrete Modal Decomposition: a new approach for the reflectance modeling and rendering of real surfaces. Machine Vision and Applications 28, 607–621 (2017). https://doi.org/10.1007/s00138-017-0856-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-017-0856-0