Abstract
A novel adaptive step-size matching pursuit algorithm (AStMP) is proposed. AStMP reduces the computational cost and increases the accuracy of reconstructing practical signals (i) whose sparsity K is unknown and/or (ii) may be corrupted by noise. AStMP accurately estimates K by combining the sparsity estimate of sparsity adaptive subspace pursuit (SASP) with the adaptively changing stepsize at each stage of sparsity adaptive matching pursuit (SAMP). Thus, AStMP can quickly achieve accurate estimation of the sparsity level and the true support set of the target signals. Meanwhile, a preselection is employed to reduce the computational complexity of each stage. When K is greater than half the number of measurements M, the probability of exact recovery is improved by analyzing the support set. Since the stepsize changes adaptively, AStMP can be applied in both the noiseless and noisy cases when the signal is not strictly sparse, allowing for exact or approximate signal recovery. Experimental results demonstrate that the AStMP is effective in fast and exact reconstruction and has good performance.
Similar content being viewed by others
References
T. Blumensath, M.E. Davies, Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009). doi:10.1016/j.acha.2009.04.002
C.R. Berger, Z. Wang, J. Huang et al., Application of compressive sensing to sparse channel estimation. IEEE Commun. Mag. 48(11), 164–174 (2010). doi:10.1109/MCOM.2010.5621984
S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998). doi:10.1137/S1064827596304010
E.J. Candès, J.K. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure. Appl. Math. 59(8), 1207–1223 (2006). doi:10.1002/cpa.20124
E.J. Candès, J.K. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006). doi:10.1109/TIT.2005.862083
E.J. Candès, T. Tao, Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005). doi:10.1109/TIT.2005.858979
D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006). doi:10.1109/TIT.2006.871582
T. T. Do, G. Lu, N. Nguyen, T. D. Tran, Sparsity adaptive matching pursuit algorithm for practical compressed sensing. In: Proceedings of the 42nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, California. pp. 581–587 (2008). doi:10.1109/ACSSC.2008.5074472
D.L. Donoho, Y. Tsaig, Jean-Luc Starck, Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit. IEEE Trans. Inf. Theory 58(2), 1094–1121 (2006). doi:10.1109/TIT.2011.2173241
J. E. Fowler, Compressive pushbroom and whiskbroom sensing For hyperspectral remote-sensing imaging. Image Processing (ICIP), In: 2014 IEEE International Conference. 684–688 (2014). doi:10.1109/ICIP.2014.7025137
M.A.T. Figueiredo, R.D. Nowak, S.J. Wright, Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007). doi:10.1109/JSTSP.2007.910281
H. Fang, H. Yang, A new compressed sensing-based matching pursuit algorithm for image reconstruction. In: International Congress on Image and Signal Processing (CISP). pp. 338–342 (2012). doi:10.1109/CISP.2012.6469673
Ioannis Kyriakides, Adaptive compressive sensing and processing of Delay–Doppler radar waveforms. IEEE Trans. Signal Process. 60(2), 730–739 (2012). doi:10.1109/TSP.2011.2174234
L.B. Montefusco, D. Lazzaro, S. Papi, C. Guerrini, A fast compressed sensing approach to 3D MR image reconstruction. IEEE Trans. Med. Imaging 30(5), 1064–1075 (2011). doi:10.1109/TMI.2010.2068306
D. Needell, J.A. Tropp, CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2008). doi:10.1016/j.acha.2008.07.002
D. Needell, R. Vershynin, Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J. Sel. Top. Signal Process. 4(2), 310–316 (2007). doi:10.1109/JSTSP.2010.2042412
D. Ramasamy, S. Venkateswaran, U. Madhow, Compressive parameter estimation in AWGN. IEEE Trans. Signal Process. 62(8), 2012–2027 (2014). doi:10.1109/TSP.2014.2306180
J. Tropp, A. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007). doi:10.1109/TIT.2007.909108
J. Wang, Z. Lu, Y. Li, A. New, CDMA encoding/decoding method for on-chip communication network. IEEE Trans. Very Larg Scale Integr. (VLSI) Syst. 24(4), 1607–1611 (2015). doi:10.1109/TVLSI.2015.2471077
D. Wei, O. Milenkovic, Subspace pursuit for compressive sensing: closing the gap between performance and complexity. Technical Report, arXiv:0803.0811 (2008). http://cds.cern.ch/record/1093014
C. Yang, W. Feng, H. Feng et al., A sparsity adaptive subspace pursuit algorithm for compressive sampling. Acta Electron. Sin. (in Chinese). 38(4), 1914–1917 (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fu, Y., Liu, S. & Ren, C. Adaptive Step-Size Matching Pursuit Algorithm for Practical Sparse Reconstruction. Circuits Syst Signal Process 36, 2275–2291 (2017). https://doi.org/10.1007/s00034-016-0393-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-016-0393-5