Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Data-Driven Forward–Backward Pursuit for Sparse Signal Reconstruction

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In recent years, compressed sensing has received considerable attention from the signal processing community because of its ability to represent sparse signals with a number of samples much less than that is required by the Nyquist sampling theorem. \(\ell _{1}\)-minimization is a powerful tool for sparse signal reconstruction from few measured samples, but its computational complexity is a burden for real applications. Recently, a number of greedy algorithms based on orthogonal matching pursuit (OMP) have been proposed, and they have near \(\ell _{1}\)-minimization performance with much less processing time. In this work, a new OMP-type two-stage sparse signal reconstruction algorithm, namely data-driven forward–backward pursuit (DD-FBP), is proposed. It is based on a former work called forward–backward pursuit (FBP). DD-FBP iteratively expands and shrinks the estimated support set, and these constitute the forward and backward stages. In DD-FBP, unlike FBP, the forward and backward step sizes are not constants, but they are dependent on the correlation and projection values, respectively, which are calculated in each iteration. The recovery performance by using noiseless and noisy sparse signal ensembles, as well as a natural sparse image, indicates that DD-FBP surpasses the other methods in terms of success rate and processing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Antoniadis, J. Bigot, T. Saapatinas, Wavelet estimators in non-parametric regression: a comparative simulation study. J. Stat. Softw. 6, 1–83 (2001)

    Article  Google Scholar 

  2. A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag. Sci. 2, 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. J.D. Blanchard, M. Cermak, D. Hanle, Y. Jing, Greedy algorithms for joint sparse recovery. IEEE Trans. Signal Process. 62, 1694–1704 (2014)

    Article  MathSciNet  Google Scholar 

  4. T. Blumensath, M.E. Davies, Stagewise weak gradient pursuits. IEEE Trans. Signal Process. 57, 4333–4346 (2009)

    Article  MathSciNet  Google Scholar 

  5. J.K. Bradley, A. Kyrola, D. Bickson, C. Guestrin, Parallel coordinate descent for \(\ell 1\)-regularized loss minimization, in Proceedings of the 28th International Conference on Machine Learning, ICML (2011)

  6. E. Candes, J. Romberg, \(\ell _{1}\)-MAGIC: Recovery of sparse signals via convex programming. Technical report, California Institute of Technology, Pasadena, CA, 2005

  7. E. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52, 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Dai, O. Milenkovic, Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inform. Theory 55, 2230–2249 (2009)

    Article  MathSciNet  Google Scholar 

  10. J.F. Determe, J. Louveaux, L. Jacques, F. Horlin, On the exact recovery condition of simultaneous orthogonal matching pursuit. IEEE Signal Process. Lett. 23, 164–168 (2016)

    Article  Google Scholar 

  11. D.L. Donoho, Compressive sensing. IEEE Trans. Inform. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. D.L. Donoho, Y. Tsaig, I. Drori, J.L. Starck, Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans. Inform. Theory 58, 1094–1121 (2012)

    Article  MathSciNet  Google Scholar 

  13. M.A.T. Figueiredo, R.D. Nowak, S.J. Wright, Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1, 586–597 (2007)

    Article  Google Scholar 

  14. J. Friedman, T. Hastie, R. Tibshirani, Regularization paths for generalized linear models via coordinate descent. J. Statist. Softw. 33, 1 (2010)

    Article  Google Scholar 

  15. E.T. Hale, W. Yin, Y. Zhang, A fixed-point continuation method for \(\ell _{1}\)-minimization: methodology and convergence. SIAM J. Optim. 19, 1107–1130 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. N.B. Karahanoglu, H. Erdogan, Compressed sensing signal recovery via forward–backward pursuit. Digit. Signal Proc. 23, 1539–1548 (2013)

    Article  MathSciNet  Google Scholar 

  17. J. Kim, H. Park, Fast active-set-type algorithms for l1-regularized linear regression, in Proceedings of the 13 \(^{th}\) International Conference on Artificial Intelligence and Statistics, AISTAD (2010)

  18. S.J. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, An interior-point method for large-scale \(\ell _{1}\)-regularized least squares. IEEE J. Sel. Top. Signal Process. 1, 606–617 (2007)

    Article  Google Scholar 

  19. E. Liu, V.N. Temlyakov, The orthogonal super greedy algorithm and applications in compressed sensing. IEEE Trans. Inform. Theory 58, 2040–2047 (2012)

    Article  MathSciNet  Google Scholar 

  20. A. Maleki, D.L. Donoho, Optimally tuned iterative reconstruction algorithms for compressed sensing. IEEE J. Sel. Top. Signal Process. 4, 330–341 (2010)

    Article  Google Scholar 

  21. B.K. Natarajan, Sparse approximate solutions to linear systems. SIAM J. Comput. 24, 227–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Needell, J.A. Tropp, CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26, 301–321 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Needell, R. Vershynin, Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J. Sel. Top. Signal Process. 4, 310–316 (2010)

    Article  Google Scholar 

  24. M.R. Osborne, B. Presnell, B. Turlach, A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20, 389–403 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Papageorgiou, P. Bouboulis, S. Theodoridis, Robust linear regression analysis—a greedy approach. IEEE Trans. Signal Process. 63, 3872–3887 (2015)

    Article  MathSciNet  Google Scholar 

  26. Y.C. Pati, R. Rezaiifar, P.S. Krishnaprasad, Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition, in Proceedings of 27th Asilomar conference on signals, systems and computers, (1993)

  27. S. Shalev-Shwartz, N. Srebro, T. Zhang, Trading accuracy for sparsity in optimization problems with sparsity constraint. SIAM J. Optim. 20, 2807–2832 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Tibshirani, Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. B 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  29. J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inform. Theory 53, 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. J.A. Tropp, S.J. Wright, Computational methods for sparse solution of linear inverse problems. Proc. IEEE 98, 948–958 (2010)

    Article  Google Scholar 

  31. J. Wang, B. Shim, On recovery limit of orthogonal matching pursuit using restricted isometry property. IEEE Trans. Signal Process. 60, 4973–4976 (2012)

    Article  MathSciNet  Google Scholar 

  32. J. Wang, S. Kwon, B. Shim, Generalized orthogonal matching pursuit. IEEE Trans. Signal Process. 60, 6202–6216 (2012)

    Article  MathSciNet  Google Scholar 

  33. J. Wang, S. Kwon, P. Li, B. Shim, Recovery of sparse signals via generalized orthogonal matching pursuit: a new analysis. IEEE Trans. Signal Process. 64, 1076–1089 (2016)

    Article  MathSciNet  Google Scholar 

  34. Z.J. Xiang, H. Xu, P.J. Ramadge, Learning sparse representations of high dimensional data on large scale dictionaries, in Proceedings of the 26th Annual Conference on Neural Information Processing Systems, NIPS (2012)

  35. L. Xiao, T. Zhang, A proximal-gradient homotopy method for the sparse least-squares problem. SIAM J. Optim. 23, 1062–1091 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Yaghoobi, D. Wu, M.E. Davies, Fast non-negative orthogonal matching pursuit. IEEE Signal Process. Lett. 22, 1229–1233 (2015)

    Article  Google Scholar 

  37. S. Yun, K.C. Toh, A coordinate gradient descent method for \(\ell _{1}\)-regularized convex minimization. Comput. Optim. Appl. 48, 273–307 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. W.J. Zeng, H.C. So, X. Jiang, Outlier-robust greedy pursuit algorithms in \(\ell _{p}\)-space for sparse approximation. IEEE Trans. Signal Process. 64, 60–75 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would like to thank the reviewers and the editor for their invaluable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Kara.

Appendix

Appendix

The following MATLAB (version 8.3) code is used to obtain the results of Sect. 4.

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kara, F. Data-Driven Forward–Backward Pursuit for Sparse Signal Reconstruction. Circuits Syst Signal Process 36, 2402–2419 (2017). https://doi.org/10.1007/s00034-016-0416-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0416-2

Keywords

Navigation