Abstract
The paper presents new realizations of grounded negative capacitance, using current feedback operational amplifiers (CFOAs), two resistors and one capacitor. All the proposed realizations are canonic in the number of passive components and do not require any critical component matching condition. Application examples in capacitive cancellation schemes and resistance-controlled low-frequency quadrature sinusoidal oscillator design are provided. The workability of the circuits has been verified by PSPICE simulations.
Similar content being viewed by others
References
M.T. Abuelma’atti, S.M. Shahrani, Synthesis of a novel low-component programmable sinusoidal oscillator. Act. Passive Electron. Compon. 26(1), 31–36 (2003)
Analog Devices, Linear Products Data Book. Norwood, MA (1990)
A. Antoniou, Floating negative impedance converter. IEEE Trans. CT-19, 209–212 (1972)
D.R. Bhaskar, R. Senani, New CFOA-based single-element-controlled sinusoidal oscillators. IEEE Trans. Instrum. Meas. 55(6), 2014–2021 (2006)
G. Di Cataldo, G. Ferri, S. Pennisi, Active capacitance multipliers using current conveyors, in Proceedings of IEEE ISCAS 98 (1998), pp. 343–346
O. Cicekoglu, Active simulation of grounded inductors with CCII+s and grounded passive elements. Int. J. Electron. 85(4), 455–462 (1998)
D.J. Comer et al., Bandwidth extension of high-gain CMOS stages using active negative capacitance, in Proceedings of 13th IEEE International Conference on Electronics, Circuits and Systems (2006), pp. 628–631
A.S. Elkawil, Systematic realization of low-frequency oscillators using composite passive–active resistors. IEEE Trans. Instrum. Meas. 47, 584–586
R.L. Geiger, E. Sánchez-Sinencio, Active filter design using operational transconductance amplifiers: a tutorial. IEEE Circuits Devices Mag. 1, 20–32 (1985)
S.S. Gupta, D.R. Bhaskar, R. Senani, New voltage controlled oscillators using CFOAs. AEU, Int. J. Electron. Commun. 63, 209–217 (2009)
A.A. Khan, S. Bimal, K.K. Dey, S.S. Roy, Current conveyor based R and C-multiplier circuits. AEU, Int. J. Electron. Commun. 56(5), 312–316 (2002)
S. Kolev, B. Delacressonniere, J.L. Gautier, Using a negative capacitance to increase the tuning range of a varactor diode in MMIC technology. IEEE Trans. Microw. Theory Tech. 49, 2425–2430 (2001)
A. Lahiri, New current-mode quadrature oscillators using CDTA. IEICE Electron. Express 6(3), 135–140 (2009)
S. Minaei, E. Yuce, A tunable circuit for realizing arbitrary floating impedances. J. Circuits Syst. Comput. 17(3), 513–524 (2008)
S. Minaei, E. Yuce, O. Cicekoglu, A versatile active circuit for realizing floating inductance, capacitance, FDNR and admittance converter. Analog Integr. Circuits Signal Process. 47, 199–202 (2006)
G. Palumbo, S. Pennissi, A high-performance CMOS voltage follower, in Proceedings of IEEE ICECS (1998), pp. 21–24
G. Palumbo, S. Pennissi, Current feedback amplifiers versus voltage operational amplifiers. IEEE Trans. Circuits Syst. I 48(5), 617–623 (2001)
A.N. Paul, D. Patranabis, Active simulation of grounded inductor using a single current conveyor. IEEE Trans. Circuits Syst. 28, 164–165 (1981)
R. Senani, Floating GNIC/GNII configuration with only a single OMA. Electron. Lett. 35(6), 423–425 (1995)
R. Senani, D.R. Bhaskar, S.S. Gupta, V.K. Singh, A configuration for realizing floating, linear, voltage-controlled resistance, and inductance and FDNC elements. Int. J. Circuit Theory Appl. (2008). doi:10.1002/cta.510
P. Silapan, C. Tanaphatsiri, M. Siripruchyanun, Current controlled CCTA based-novel grounded capacitance multiplier with temperature compensation, in Proceedings of IEEE APCCAS, Macaou, China (2008), pp. 1490–1493
SNAP-Symbolic and Numerical Analysis Program, http://snap.webpark.cz
A.M. Soliman, Synthesis of grounded capacitor and grounded resistor oscillators. J. Franklin Inst. 336, 735–746 (1999)
A.M. Soliman, Generation of current conveyor based oscillators using nodal admittance matrix expansion. Analog Integr. Circuits Signal Process. (2009). doi:10.1007/s10470-009-9432-5
E. Tlelo-Cuautle, A. Gaona-Hernández, J. García-Delgado, Implementation of a chaotic oscillator by designing Chua’s diode with CMOS CFOAs. Analog Integr. Circuits Signal Process. 48(2), 159–162 (2006)
E. Tlelo-Cuautle, M.A. Duarte-Villaseñor, J.M. García-Ortega, C. Sánchez-López, Designing SRCOs by combining SPICE and Verilog-A. Int. J. Electron. 94(4), 373–379 (2007)
E. Tlelo-Cuautle, M.A. Duarte-Villaseñor, I. Guerra-Gómez, Automatic synthesis of VFs and VMs by applying genetic algorithms. Circuits Syst. Signal Process. 27(3), 391–403 (2008)
E. Yuce, Negative impedance converter with reduced nonideal gain and parasitic impedance effects. IEEE Trans. Circuits Syst. I 55(1), 276–283 (2008)
E. Yuce, Novel lossless and lossy grounded inductor simulators consisting of a canonical number of components. Analog Integr. Circuits Signal Process. (2009). doi:10.1007/s10470-008-9235-0
E. Yuce, S. Minaei, A modified CFOA and its applications to simulated inductors, capacitance multipliers, and analog filters. IEEE Trans. Circuits Syst. I 55(1), 254–263 (2008)
E. Yuce, S. Minaei, Novel floating simulated inductors with wider operating frequency ranges. Microelectron. J. 40, 928–938 (2009)
E. Yuce, S. Minaei, On the realization of simulated inductors with reduced parasitic impedance effects. Circuits Syst. Signal Process. 28, 451–465 (2009)
E. Yuce, S. Minaei, O. Cicekoglu, A novel grounded inductor realization using a minimum number of active and passive components. ETRI J. 27, 427–432 (2005)
E. Yuce, S. Minaei, O. Cicekoglu, Resistorless floating immittance function simulators employing current controlled conveyors and a grounded capacitor. Electr. Electron. J. 88(6), 519–525 (2006) (Archiv für Elektrotechnik)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lahiri, A., Gupta, M. Realizations of Grounded Negative Capacitance Using CFOAs. Circuits Syst Signal Process 30, 143–155 (2011). https://doi.org/10.1007/s00034-010-9215-3
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-010-9215-3