Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Realizations of Grounded Negative Capacitance Using CFOAs

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The paper presents new realizations of grounded negative capacitance, using current feedback operational amplifiers (CFOAs), two resistors and one capacitor. All the proposed realizations are canonic in the number of passive components and do not require any critical component matching condition. Application examples in capacitive cancellation schemes and resistance-controlled low-frequency quadrature sinusoidal oscillator design are provided. The workability of the circuits has been verified by PSPICE simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.T. Abuelma’atti, S.M. Shahrani, Synthesis of a novel low-component programmable sinusoidal oscillator. Act. Passive Electron. Compon. 26(1), 31–36 (2003)

    Article  Google Scholar 

  2. Analog Devices, Linear Products Data Book. Norwood, MA (1990)

  3. A. Antoniou, Floating negative impedance converter. IEEE Trans. CT-19, 209–212 (1972)

    Google Scholar 

  4. D.R. Bhaskar, R. Senani, New CFOA-based single-element-controlled sinusoidal oscillators. IEEE Trans. Instrum. Meas. 55(6), 2014–2021 (2006)

    Article  Google Scholar 

  5. G. Di Cataldo, G. Ferri, S. Pennisi, Active capacitance multipliers using current conveyors, in Proceedings of IEEE ISCAS 98 (1998), pp. 343–346

    Google Scholar 

  6. O. Cicekoglu, Active simulation of grounded inductors with CCII+s and grounded passive elements. Int. J. Electron. 85(4), 455–462 (1998)

    Article  Google Scholar 

  7. D.J. Comer et al., Bandwidth extension of high-gain CMOS stages using active negative capacitance, in Proceedings of 13th IEEE International Conference on Electronics, Circuits and Systems (2006), pp. 628–631

    Chapter  Google Scholar 

  8. A.S. Elkawil, Systematic realization of low-frequency oscillators using composite passive–active resistors. IEEE Trans. Instrum. Meas. 47, 584–586

  9. R.L. Geiger, E. Sánchez-Sinencio, Active filter design using operational transconductance amplifiers: a tutorial. IEEE Circuits Devices Mag. 1, 20–32 (1985)

    Google Scholar 

  10. S.S. Gupta, D.R. Bhaskar, R. Senani, New voltage controlled oscillators using CFOAs. AEU, Int. J. Electron. Commun. 63, 209–217 (2009)

    Article  Google Scholar 

  11. A.A. Khan, S. Bimal, K.K. Dey, S.S. Roy, Current conveyor based R and C-multiplier circuits. AEU, Int. J. Electron. Commun. 56(5), 312–316 (2002)

    Article  Google Scholar 

  12. S. Kolev, B. Delacressonniere, J.L. Gautier, Using a negative capacitance to increase the tuning range of a varactor diode in MMIC technology. IEEE Trans. Microw. Theory Tech. 49, 2425–2430 (2001)

    Article  Google Scholar 

  13. A. Lahiri, New current-mode quadrature oscillators using CDTA. IEICE Electron. Express 6(3), 135–140 (2009)

    Article  Google Scholar 

  14. S. Minaei, E. Yuce, A tunable circuit for realizing arbitrary floating impedances. J. Circuits Syst. Comput. 17(3), 513–524 (2008)

    Article  Google Scholar 

  15. S. Minaei, E. Yuce, O. Cicekoglu, A versatile active circuit for realizing floating inductance, capacitance, FDNR and admittance converter. Analog Integr. Circuits Signal Process. 47, 199–202 (2006)

    Article  Google Scholar 

  16. G. Palumbo, S. Pennissi, A high-performance CMOS voltage follower, in Proceedings of IEEE ICECS (1998), pp. 21–24

    Google Scholar 

  17. G. Palumbo, S. Pennissi, Current feedback amplifiers versus voltage operational amplifiers. IEEE Trans. Circuits Syst. I 48(5), 617–623 (2001)

    Article  Google Scholar 

  18. A.N. Paul, D. Patranabis, Active simulation of grounded inductor using a single current conveyor. IEEE Trans. Circuits Syst. 28, 164–165 (1981)

    Article  Google Scholar 

  19. R. Senani, Floating GNIC/GNII configuration with only a single OMA. Electron. Lett. 35(6), 423–425 (1995)

    Article  Google Scholar 

  20. R. Senani, D.R. Bhaskar, S.S. Gupta, V.K. Singh, A configuration for realizing floating, linear, voltage-controlled resistance, and inductance and FDNC elements. Int. J. Circuit Theory Appl. (2008). doi:10.1002/cta.510

    Google Scholar 

  21. P. Silapan, C. Tanaphatsiri, M. Siripruchyanun, Current controlled CCTA based-novel grounded capacitance multiplier with temperature compensation, in Proceedings of IEEE APCCAS, Macaou, China (2008), pp. 1490–1493

    Google Scholar 

  22. SNAP-Symbolic and Numerical Analysis Program, http://snap.webpark.cz

  23. A.M. Soliman, Synthesis of grounded capacitor and grounded resistor oscillators. J. Franklin Inst. 336, 735–746 (1999)

    Article  MATH  Google Scholar 

  24. A.M. Soliman, Generation of current conveyor based oscillators using nodal admittance matrix expansion. Analog Integr. Circuits Signal Process. (2009). doi:10.1007/s10470-009-9432-5

    Google Scholar 

  25. E. Tlelo-Cuautle, A. Gaona-Hernández, J. García-Delgado, Implementation of a chaotic oscillator by designing Chua’s diode with CMOS CFOAs. Analog Integr. Circuits Signal Process. 48(2), 159–162 (2006)

    Article  Google Scholar 

  26. E. Tlelo-Cuautle, M.A. Duarte-Villaseñor, J.M. García-Ortega, C. Sánchez-López, Designing SRCOs by combining SPICE and Verilog-A. Int. J. Electron. 94(4), 373–379 (2007)

    Article  Google Scholar 

  27. E. Tlelo-Cuautle, M.A. Duarte-Villaseñor, I. Guerra-Gómez, Automatic synthesis of VFs and VMs by applying genetic algorithms. Circuits Syst. Signal Process. 27(3), 391–403 (2008)

    Article  Google Scholar 

  28. E. Yuce, Negative impedance converter with reduced nonideal gain and parasitic impedance effects. IEEE Trans. Circuits Syst. I 55(1), 276–283 (2008)

    Article  MathSciNet  Google Scholar 

  29. E. Yuce, Novel lossless and lossy grounded inductor simulators consisting of a canonical number of components. Analog Integr. Circuits Signal Process. (2009). doi:10.1007/s10470-008-9235-0

    MATH  Google Scholar 

  30. E. Yuce, S. Minaei, A modified CFOA and its applications to simulated inductors, capacitance multipliers, and analog filters. IEEE Trans. Circuits Syst. I 55(1), 254–263 (2008)

    MathSciNet  Google Scholar 

  31. E. Yuce, S. Minaei, Novel floating simulated inductors with wider operating frequency ranges. Microelectron. J. 40, 928–938 (2009)

    Article  Google Scholar 

  32. E. Yuce, S. Minaei, On the realization of simulated inductors with reduced parasitic impedance effects. Circuits Syst. Signal Process. 28, 451–465 (2009)

    Google Scholar 

  33. E. Yuce, S. Minaei, O. Cicekoglu, A novel grounded inductor realization using a minimum number of active and passive components. ETRI J. 27, 427–432 (2005)

    Article  Google Scholar 

  34. E. Yuce, S. Minaei, O. Cicekoglu, Resistorless floating immittance function simulators employing current controlled conveyors and a grounded capacitor. Electr. Electron. J. 88(6), 519–525 (2006) (Archiv für Elektrotechnik)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhirup Lahiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahiri, A., Gupta, M. Realizations of Grounded Negative Capacitance Using CFOAs. Circuits Syst Signal Process 30, 143–155 (2011). https://doi.org/10.1007/s00034-010-9215-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-010-9215-3

Keywords

Navigation