Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Genuine three qubit Einstein–Podolsky–Rosen steering under decoherence: revealing hidden genuine steerability via pre-processing

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The behaviour of genuine EPR steering of three qubit states under various environmental noises is investigated. In particular, we consider the two possible steering scenarios in the tripartite setting: (1 \(\rightarrow \) 2), where Alice demonstrates genuine steering to Bob-Charlie and (2 \(\rightarrow \) 1), where Alice-Bob together demonstrate genuine steering to Charlie. In both these scenarios, we analyse the genuine steerability of the generalized Greenberger–Horne–Zeilinger (gGHZ) states or the W-class states under the action of noise modelled by amplitude damping (AD), phase flip (PF), bit flip (BF) and phase damping (PD) channels. In each case, we consider three different interactions with the noise depending upon the number of parties undergoing decoherence. We observed that the tendency to demonstrate genuine steering decreases as the number of parties undergoing decoherence increases from one to three. We have observed several instances where the genuine steerability of the state revives after collapsing if one keeps on increasing the damping. However, hidden genuine steerability of a state cannot be revealed solely from the action of noise. So, the parties having a characterized subsystem perform local pre-processing operations depending upon the steering scenario and the state shared with the dual intent of revealing hidden genuine steerability or enhancing it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data sets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Bengtsson, I., Zyczkowski, K.: A brief introduction to multipartite entanglement. arxiv: 1612.07747

  2. Guhne, O., Seevinck, M.: Separability criteria for genuine multiparticle entanglement. New J. Phys. 12, 053002 (2010). https://doi.org/10.1088/1367-2630/12/5/053002

    Article  ADS  MATH  Google Scholar 

  3. He, Q.Y., Reid, M.D.: Genuine multipartite Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 111, 250403 (2013). https://doi.org/10.1103/PhysRevLett.111.250403

    Article  ADS  Google Scholar 

  4. Li, C.M., Chen, K., Chen, Y.N., Zhang, Q., Chen, Y.A., Pan, J.W.: Genuine high-order Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 115, 010402 (2015). https://doi.org/10.1103/PhysRevLett.115.010402

    Article  ADS  Google Scholar 

  5. Cavalcanti, D., Skrzypczyk, P., Aguilar, G.H., Nery, R.V., Souto Ribeiro, P.H., Walborn, S.P.: Detection of entanglement in asymmetric quantum networks and multipartite quantum steering. Nature (2015). https://doi.org/10.1038/ncomms8941

    Article  Google Scholar 

  6. Cavalcanti, D., Skrzypczyk, P.: Quantum steering: a review with focus on semidefinite programming. Rep. Prog. Phys. 80, 024001 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  7. Riccardi, A., Macchiavello, C., Maccone, L.: Multipartite steering inequalities based on entropic uncertainty relations. Phys. Rev. A 97, 052307 (2018). https://doi.org/10.1103/PhysRevA.97.052307

    Article  ADS  Google Scholar 

  8. Collins, D., Gisin, N., Popescu, S., Roberts, D., Scarani, V.: Bell-type inequalities to detect true \(n\)-body nonseparability. Phys. Rev. Lett. 88, 170405 (2002). https://doi.org/10.1103/PhysRevLett.88.170405

    Article  ADS  Google Scholar 

  9. Cavalcanti, E.G., He, Q.Y., Reid, M.D., Wiseman, H.M.: Unified criteria for multipartite quantum nonlocality. Phys. Rev. A 84, 032115 (2011). https://doi.org/10.1103/PhysRevA.84.032115

    Article  ADS  Google Scholar 

  10. Bancal, J.-D., Barrett, J., Gisin, N., Pironio, S.: Definitions of multipartite nonlocality. Phys. Rev. A 88, 014102 (2013). https://doi.org/10.1103/PhysRevA.88.014102

    Article  ADS  Google Scholar 

  11. Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  12. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999). https://doi.org/10.1103/PhysRevA.59.1829

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Kogias, I., Xiang, Y., He, Q., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95, 012315 (2017). https://doi.org/10.1103/PhysRevA.95.012315

    Article  ADS  Google Scholar 

  14. Xiang, Y., Kogias, I., Adesso, G., He, Q.: Multipartite Gaussian steering: monogamy constraints and quantum cryptography applications. Phys. Rev. A 95, 010101 (2017). https://doi.org/10.1103/PhysRevA.95.010101

    Article  ADS  Google Scholar 

  15. Branciard, C., Cavalcanti, E.G., Walborn, S.P., Scarani, V., Wiseman, H.M.: One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301(R) (2012). https://doi.org/10.1103/PhysRevA.85.010301

    Article  ADS  Google Scholar 

  16. Mattar, A., Skrzypczyk, P., Aguilar, G.H., Nery, R.V., Ribeiro, P.H.S., Walborn, S.P., Cavalcanti, D.: Experimental multipartite entanglement and randomness certification of the W state in the quantum steering scenario. Quantum Sci. Technol. 2, 015011 (2017). https://doi.org/10.1088/2058-9565/aa629b

    Article  ADS  Google Scholar 

  17. Ghosh, B., Majumdar, A.S., Nayak, N.: Environment-assisted entanglement enhancement. Phys. Rev. A 74, 052315 (2006). https://doi.org/10.1103/PhysRevA.74.052315

    Article  ADS  Google Scholar 

  18. badziag, P., Horoecki, M., Horodecki, P., Horodecki, R.: Local environment can enhance fidelity of quantum teleportation. Phys. Rev. A 62, 012311 (2000). https://doi.org/10.1103/PhysRevA.62.012311

    Article  ADS  Google Scholar 

  19. Bandyopadhyay, S.: Origin of noisy states whose teleportation fidelity can be enhanced through dissipation. Phys. Rev. A 65, 022302 (2002). https://doi.org/10.1103/PhysRevA.65.022302

    Article  ADS  Google Scholar 

  20. Hirsch, F., Quintino, M.T., Bowles, J., Brunner, N.: Genuine hidden quantum nonlocality. Phys. Rev. Lett. 111, 160402 (2013). https://doi.org/10.1103/PhysRevLett.111.160402

    Article  ADS  Google Scholar 

  21. Pramanik, T., Cho, Y.-W., Han, S.-W., Lee, S.-Y., Kim, Y.-S., Moon, S.: Revealing hidden quantum steerability using local filtering operations. Phys. Rev. A 99, 030101 (2019). https://doi.org/10.1103/PhysRevA.99.030101

    Article  ADS  Google Scholar 

  22. Kim, Y.-S., Lee, J.-C., Kwon, O., Kim, Y.-H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  23. Gupta, R., Gupta, S., Mal, S., Sen, A.: Constructive feedback of non-Markovianity on resources in random quantum states (2020). arXiv:2005.04009

  24. Gupta, R., Gupta, S., Mal, S., Sen, A.: Performance of dense coding and teleportation for random states: augmentation via pre-processing (2020). arXiv:2012.05865

  25. Sun, W.Y., Wang, D., Shi, J.D., Ye, L.: Exploration quantum steering, nonlocality and entanglement of two-qubit X-state in structured reservoirs. Sci. Rep. 7, 39651 (2017)

    Article  ADS  Google Scholar 

  26. Sohbi, A., Zaquine, I., Diamanti, E., Markham, D.: Decoherence effects on the nonlocality of symmetric states. Phys. Rev. A 91, 022101 (2015). https://doi.org/10.1103/PhysRevA.91.022101

    Article  ADS  MathSciNet  Google Scholar 

  27. Pramanik, T., Cho, Y.-W., Han, S.-W., Lee, S.-Y., Moon, S., Kim, Y.-S.: Nonlocal quantum correlations under amplitude damping decoherence. Phys. Rev. A 100, 042311 (2019). https://doi.org/10.1103/PhysRevA.100.042311

    Article  ADS  Google Scholar 

  28. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988). https://doi.org/10.1103/PhysRevLett.60.1351

    Article  ADS  Google Scholar 

  29. Lee, J.-C., Jeong, Y.-C., Kim, Y.-S., Kim, Y.-H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309 (2011)

    Article  ADS  Google Scholar 

  30. Man, Z.-X., Xia, Y.-J., An, N.B.: Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and postmeasurements. Phys. Rev. A 86, 052322 (2012). https://doi.org/10.1103/PhysRevA.86.052322

    Article  ADS  Google Scholar 

  31. Li, Y.-L., Xiao, X.: Recovering quantum correlations from amplitude damping decoherence by weak measurement reversal. Quantum Inf. Process. 12, 3067 (2013). https://doi.org/10.1007/s11128-013-0585-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Gupta, S., Datta, S., Majumdar, A.S.: Preservation of quantum nonbilocal correlations in noisy entanglement-swapping experiments using weak measurements. Phys. Rev. A 98, 042322 (2018). https://doi.org/10.1103/PhysRevA.98.042322

    Article  ADS  Google Scholar 

  33. Ali, M.: Evolution of genuine multipartite entanglement of specific and random states under non-Markovian noise. Open Syst. Inf. Dyn. (2014). https://doi.org/10.1142/S1230161214500085

    Article  MathSciNet  MATH  Google Scholar 

  34. Zong, X.L., Du, C.Q., Yang, M., et al.: Protecting multipartite entanglement against weak-measurement-induced amplitude damping by local unitary operations. Quantum Inf. Process. 14, 3423–3440 (2015). https://doi.org/10.1007/s11128-015-1041-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Mazhar, A.: Robustness of genuine tripartite entanglement under collective dephasing. Chin. Phys. Lett. 32, 060302 (2015)

    Article  Google Scholar 

  36. Kim, K.I., Pak, M.C., Kim, T.H.: Decoherence of multipartite entanglement states under amplitude-damping environment in non-inertial frames. Eur. Phys. J. D 74, 124 (2020). https://doi.org/10.1140/epjd/e2020-10098-3

    Article  ADS  Google Scholar 

  37. Chaves, R., Cavalcanti, D., Aolita, L., Acín, A.: Multipartite quantum nonlocality under local decoherence. Phys. Rev. A 86, 012108 (2012). https://doi.org/10.1103/PhysRevA.86.012108

    Article  ADS  Google Scholar 

  38. Chaves, R., Acín, A., Aolita, L., Cavalcanti, D.: Detecting nonlocality of noisy multipartite states with the Clauser-Horne-Shimony-Holt inequality. Phys. Rev. A 89, 042106 (2014). https://doi.org/10.1103/PhysRevA.89.042106

    Article  ADS  Google Scholar 

  39. Armstrong, S., Wang, M., Teh, R.Y., Gong, Q., He, Q., Janousek, J., Bachor, H.-A., Reid, M.D., Lam, P.K.: Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks. Nat. Phys. 11, 167–172 (2015)

    Article  Google Scholar 

  40. Sun, W.Y., Wang, D., Ye, L.: Dynamics and recovery of genuine multipartite Einstein-Podolsky-Rosen steering and genuine multipartite nonlocality for a dissipative Dirac system via Unruh effect (2017). arXiv:1711.03738

  41. Gupta, S., Das, D., Majumdar, A.S.: Distillation of genuine tripartite Einstein-Podolsky-Rosen steering (2020). arXiv:2010.09223

  42. Liu, Y., Liang, S.L., Jin, G.R., Yu, Y.B.: Genuine tripartite Einstein-Podolsky-Rosen steering in the cascaded nonlinear processes of third-harmonic generation. Opt. Express 28, 2722 (2020)

    Article  ADS  Google Scholar 

  43. Gupta, S., Maity, A.G., Das, D., Roy, A., Majumdar, A.S.: Genuine Einstein-Podolsky-Rosen steering of three-qubit states by multiple sequential observers. Phys. Rev. A 103, 022421 (2021). https://doi.org/10.1103/PhysRevA.103.022421

    Article  ADS  MathSciNet  Google Scholar 

  44. Acín, A., Bruß, D., Lewenstein, M., Sanpera, A.: Classification of mixed three-qubit states. Phys. Rev. Lett. 87, 040401 (2001). https://doi.org/10.1103/PhysRevLett.87.040401

    Article  ADS  MathSciNet  Google Scholar 

  45. Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000). https://doi.org/10.1103/PhysRevA.62.062314

    Article  ADS  MathSciNet  Google Scholar 

  46. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, New York

Download references

Acknowledgements

SG acknowledges the S. N. Bose National Centre for Basic Sciences and QuNu Labs Pvt Ltd for the financial support. SG thanks Archan S Majumdar for the fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashank Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S. Genuine three qubit Einstein–Podolsky–Rosen steering under decoherence: revealing hidden genuine steerability via pre-processing. Quantum Inf Process 22, 49 (2023). https://doi.org/10.1007/s11128-022-03804-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03804-2

Keywords

Navigation