Abstract
The behaviour of genuine EPR steering of three qubit states under various environmental noises is investigated. In particular, we consider the two possible steering scenarios in the tripartite setting: (1 \(\rightarrow \) 2), where Alice demonstrates genuine steering to Bob-Charlie and (2 \(\rightarrow \) 1), where Alice-Bob together demonstrate genuine steering to Charlie. In both these scenarios, we analyse the genuine steerability of the generalized Greenberger–Horne–Zeilinger (gGHZ) states or the W-class states under the action of noise modelled by amplitude damping (AD), phase flip (PF), bit flip (BF) and phase damping (PD) channels. In each case, we consider three different interactions with the noise depending upon the number of parties undergoing decoherence. We observed that the tendency to demonstrate genuine steering decreases as the number of parties undergoing decoherence increases from one to three. We have observed several instances where the genuine steerability of the state revives after collapsing if one keeps on increasing the damping. However, hidden genuine steerability of a state cannot be revealed solely from the action of noise. So, the parties having a characterized subsystem perform local pre-processing operations depending upon the steering scenario and the state shared with the dual intent of revealing hidden genuine steerability or enhancing it.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The data sets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
References
Bengtsson, I., Zyczkowski, K.: A brief introduction to multipartite entanglement. arxiv: 1612.07747
Guhne, O., Seevinck, M.: Separability criteria for genuine multiparticle entanglement. New J. Phys. 12, 053002 (2010). https://doi.org/10.1088/1367-2630/12/5/053002
He, Q.Y., Reid, M.D.: Genuine multipartite Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 111, 250403 (2013). https://doi.org/10.1103/PhysRevLett.111.250403
Li, C.M., Chen, K., Chen, Y.N., Zhang, Q., Chen, Y.A., Pan, J.W.: Genuine high-order Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 115, 010402 (2015). https://doi.org/10.1103/PhysRevLett.115.010402
Cavalcanti, D., Skrzypczyk, P., Aguilar, G.H., Nery, R.V., Souto Ribeiro, P.H., Walborn, S.P.: Detection of entanglement in asymmetric quantum networks and multipartite quantum steering. Nature (2015). https://doi.org/10.1038/ncomms8941
Cavalcanti, D., Skrzypczyk, P.: Quantum steering: a review with focus on semidefinite programming. Rep. Prog. Phys. 80, 024001 (2016)
Riccardi, A., Macchiavello, C., Maccone, L.: Multipartite steering inequalities based on entropic uncertainty relations. Phys. Rev. A 97, 052307 (2018). https://doi.org/10.1103/PhysRevA.97.052307
Collins, D., Gisin, N., Popescu, S., Roberts, D., Scarani, V.: Bell-type inequalities to detect true \(n\)-body nonseparability. Phys. Rev. Lett. 88, 170405 (2002). https://doi.org/10.1103/PhysRevLett.88.170405
Cavalcanti, E.G., He, Q.Y., Reid, M.D., Wiseman, H.M.: Unified criteria for multipartite quantum nonlocality. Phys. Rev. A 84, 032115 (2011). https://doi.org/10.1103/PhysRevA.84.032115
Bancal, J.-D., Barrett, J., Gisin, N., Pironio, S.: Definitions of multipartite nonlocality. Phys. Rev. A 88, 014102 (2013). https://doi.org/10.1103/PhysRevA.88.014102
Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)
Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999). https://doi.org/10.1103/PhysRevA.59.1829
Kogias, I., Xiang, Y., He, Q., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95, 012315 (2017). https://doi.org/10.1103/PhysRevA.95.012315
Xiang, Y., Kogias, I., Adesso, G., He, Q.: Multipartite Gaussian steering: monogamy constraints and quantum cryptography applications. Phys. Rev. A 95, 010101 (2017). https://doi.org/10.1103/PhysRevA.95.010101
Branciard, C., Cavalcanti, E.G., Walborn, S.P., Scarani, V., Wiseman, H.M.: One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301(R) (2012). https://doi.org/10.1103/PhysRevA.85.010301
Mattar, A., Skrzypczyk, P., Aguilar, G.H., Nery, R.V., Ribeiro, P.H.S., Walborn, S.P., Cavalcanti, D.: Experimental multipartite entanglement and randomness certification of the W state in the quantum steering scenario. Quantum Sci. Technol. 2, 015011 (2017). https://doi.org/10.1088/2058-9565/aa629b
Ghosh, B., Majumdar, A.S., Nayak, N.: Environment-assisted entanglement enhancement. Phys. Rev. A 74, 052315 (2006). https://doi.org/10.1103/PhysRevA.74.052315
badziag, P., Horoecki, M., Horodecki, P., Horodecki, R.: Local environment can enhance fidelity of quantum teleportation. Phys. Rev. A 62, 012311 (2000). https://doi.org/10.1103/PhysRevA.62.012311
Bandyopadhyay, S.: Origin of noisy states whose teleportation fidelity can be enhanced through dissipation. Phys. Rev. A 65, 022302 (2002). https://doi.org/10.1103/PhysRevA.65.022302
Hirsch, F., Quintino, M.T., Bowles, J., Brunner, N.: Genuine hidden quantum nonlocality. Phys. Rev. Lett. 111, 160402 (2013). https://doi.org/10.1103/PhysRevLett.111.160402
Pramanik, T., Cho, Y.-W., Han, S.-W., Lee, S.-Y., Kim, Y.-S., Moon, S.: Revealing hidden quantum steerability using local filtering operations. Phys. Rev. A 99, 030101 (2019). https://doi.org/10.1103/PhysRevA.99.030101
Kim, Y.-S., Lee, J.-C., Kwon, O., Kim, Y.-H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)
Gupta, R., Gupta, S., Mal, S., Sen, A.: Constructive feedback of non-Markovianity on resources in random quantum states (2020). arXiv:2005.04009
Gupta, R., Gupta, S., Mal, S., Sen, A.: Performance of dense coding and teleportation for random states: augmentation via pre-processing (2020). arXiv:2012.05865
Sun, W.Y., Wang, D., Shi, J.D., Ye, L.: Exploration quantum steering, nonlocality and entanglement of two-qubit X-state in structured reservoirs. Sci. Rep. 7, 39651 (2017)
Sohbi, A., Zaquine, I., Diamanti, E., Markham, D.: Decoherence effects on the nonlocality of symmetric states. Phys. Rev. A 91, 022101 (2015). https://doi.org/10.1103/PhysRevA.91.022101
Pramanik, T., Cho, Y.-W., Han, S.-W., Lee, S.-Y., Moon, S., Kim, Y.-S.: Nonlocal quantum correlations under amplitude damping decoherence. Phys. Rev. A 100, 042311 (2019). https://doi.org/10.1103/PhysRevA.100.042311
Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988). https://doi.org/10.1103/PhysRevLett.60.1351
Lee, J.-C., Jeong, Y.-C., Kim, Y.-S., Kim, Y.-H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309 (2011)
Man, Z.-X., Xia, Y.-J., An, N.B.: Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and postmeasurements. Phys. Rev. A 86, 052322 (2012). https://doi.org/10.1103/PhysRevA.86.052322
Li, Y.-L., Xiao, X.: Recovering quantum correlations from amplitude damping decoherence by weak measurement reversal. Quantum Inf. Process. 12, 3067 (2013). https://doi.org/10.1007/s11128-013-0585-x
Gupta, S., Datta, S., Majumdar, A.S.: Preservation of quantum nonbilocal correlations in noisy entanglement-swapping experiments using weak measurements. Phys. Rev. A 98, 042322 (2018). https://doi.org/10.1103/PhysRevA.98.042322
Ali, M.: Evolution of genuine multipartite entanglement of specific and random states under non-Markovian noise. Open Syst. Inf. Dyn. (2014). https://doi.org/10.1142/S1230161214500085
Zong, X.L., Du, C.Q., Yang, M., et al.: Protecting multipartite entanglement against weak-measurement-induced amplitude damping by local unitary operations. Quantum Inf. Process. 14, 3423–3440 (2015). https://doi.org/10.1007/s11128-015-1041-x
Mazhar, A.: Robustness of genuine tripartite entanglement under collective dephasing. Chin. Phys. Lett. 32, 060302 (2015)
Kim, K.I., Pak, M.C., Kim, T.H.: Decoherence of multipartite entanglement states under amplitude-damping environment in non-inertial frames. Eur. Phys. J. D 74, 124 (2020). https://doi.org/10.1140/epjd/e2020-10098-3
Chaves, R., Cavalcanti, D., Aolita, L., Acín, A.: Multipartite quantum nonlocality under local decoherence. Phys. Rev. A 86, 012108 (2012). https://doi.org/10.1103/PhysRevA.86.012108
Chaves, R., Acín, A., Aolita, L., Cavalcanti, D.: Detecting nonlocality of noisy multipartite states with the Clauser-Horne-Shimony-Holt inequality. Phys. Rev. A 89, 042106 (2014). https://doi.org/10.1103/PhysRevA.89.042106
Armstrong, S., Wang, M., Teh, R.Y., Gong, Q., He, Q., Janousek, J., Bachor, H.-A., Reid, M.D., Lam, P.K.: Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks. Nat. Phys. 11, 167–172 (2015)
Sun, W.Y., Wang, D., Ye, L.: Dynamics and recovery of genuine multipartite Einstein-Podolsky-Rosen steering and genuine multipartite nonlocality for a dissipative Dirac system via Unruh effect (2017). arXiv:1711.03738
Gupta, S., Das, D., Majumdar, A.S.: Distillation of genuine tripartite Einstein-Podolsky-Rosen steering (2020). arXiv:2010.09223
Liu, Y., Liang, S.L., Jin, G.R., Yu, Y.B.: Genuine tripartite Einstein-Podolsky-Rosen steering in the cascaded nonlinear processes of third-harmonic generation. Opt. Express 28, 2722 (2020)
Gupta, S., Maity, A.G., Das, D., Roy, A., Majumdar, A.S.: Genuine Einstein-Podolsky-Rosen steering of three-qubit states by multiple sequential observers. Phys. Rev. A 103, 022421 (2021). https://doi.org/10.1103/PhysRevA.103.022421
Acín, A., Bruß, D., Lewenstein, M., Sanpera, A.: Classification of mixed three-qubit states. Phys. Rev. Lett. 87, 040401 (2001). https://doi.org/10.1103/PhysRevLett.87.040401
Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000). https://doi.org/10.1103/PhysRevA.62.062314
Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, New York
Acknowledgements
SG acknowledges the S. N. Bose National Centre for Basic Sciences and QuNu Labs Pvt Ltd for the financial support. SG thanks Archan S Majumdar for the fruitful discussion.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gupta, S. Genuine three qubit Einstein–Podolsky–Rosen steering under decoherence: revealing hidden genuine steerability via pre-processing. Quantum Inf Process 22, 49 (2023). https://doi.org/10.1007/s11128-022-03804-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03804-2