Abstract
We consider a weak measurement reversal proposal to recover quantum correlations of two-qubit system under local amplitude damping channels. With weak measurement reversal, we show that quantum correlations do not vanish but preserve a finite value in the limit of the noise strength \(p\rightarrow 1\), which can be attributed to the probabilistic nature of this method. The experimental feasibility of this approach is also discussed in pure optical systems.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambrige University Press, Cambridge (2000)
Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)
Masanes, L., Pironio, S., Acin, A.: Secure device-independent quantum key distribution with causally independent measurement devices. Nat. Commun. 2, 238 (2011)
Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011)
Li, X.Y., Pan, Q., Jing, J.T., Zhang, J., Xie, C.D., Peng, K.C.: Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam. Phys. Rev. Lett. 88, 047904 (2002)
Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672–5675 (1998)
Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)
Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)
Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)
Ollivier, H., Zurek, W.H.: A measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)
Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)
Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598–601 (2009)
Almeida, M.P., et al.: Environment-induced sudden death of entanglement. Science 316, 579–582 (2007)
Werlang, T., Souza, S., Fanchini, F.F., Villas Boas, C.J.: Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)
The weak measurements involved in our discussions are POVM which are different with the post-selected weak measurement proposed by Aharonov et al. in Phys. Rev. Lett. 60, 1351 (1988)
Korotkov, A.N.: Continuous quantum measurement of a double dot. Phys. Rev. B 60, 5737–5742 (1999)
Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)
Sun, Q.Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)
Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)
Xiao, X., Feng, M.: Reexamination of the feedback control on quantum states via weak measurements. Phys. Rev. A 83, 054301 (2011)
Sun, Q.Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)
Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)
Katz, N., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)
Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978–11985 (2009)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)
Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)
Popescu, S.: Bells inequalities versus teleportation: what is nonlocality? Phys. Rev. Lett. 72, 797–799 (1994)
Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Non-Markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010)
Zhang, Y.S., Huang, Y.F., Li, C.F., Guo, G.C.: Experimental preparation of the Werner state via spontaneous parametric down-conversion. Phys. Rev. A 66, 062315 (2002)
Barbieri, M., Martini, F.D., Nepi, G.D., Mataloni, P.: DAriano, G.M., Macchiavello, C.: Detection of entanglement with polarized photons: experimental realization of an entanglement witness. Phys. Rev. Lett. 91, 227901 (2003)
Acknowledgments
We thank Z.Y. Xu for his warmhearted help. This work is supported by the Special Funds of the National Natural Science Foundation of China under Grant Nos. 11247006 and 11247207, and by Scientic Research Foundation of Jiangxi Provincial Education Department under Grants No. GJJ12355 and by Natural Science Foundation of Jiangxi under Grants No. 20122BAB212004.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, YL., Xiao, X. Recovering quantum correlations from amplitude damping decoherence by weak measurement reversal. Quantum Inf Process 12, 3067–3077 (2013). https://doi.org/10.1007/s11128-013-0585-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-013-0585-x