Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Numerical Integrators for Continuous Disordered Nonlinear Schrödinger Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider the numerical solution of the continuous disordered nonlinear Schrödinger equation, which contains a spatial random potential. We address the finite time accuracy order reduction issue of the usual numerical integrators on this problem, which is due to the presence of the random/rough potential. By using the recently proposed low-regularity integrator (LRI) from (33, SIAM J Numer Anal, 2019), we show how to integrate the potential term by losing two spatial derivatives. Convergence analysis is done to show that LRI has the second order accuracy in \(L^2\)-norm for potentials in \(H^2\). Numerical experiments are done to verify this theoretical result. More numerical results are presented to investigate the accuracy of LRI compared with classical methods under rougher random potentials from applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59, 31–53 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)

    Article  Google Scholar 

  3. Antoine, X., Bao, W., Besse, C.: Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations. Comput. Phys. Commun. 184, 2621–2633 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anton, R., Cohen, D.: Exponential integrators for stochastic Schrödinger equations driven by Itô noise. J. Comput. Math. 36, 276–309 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Allez, R., Chouk, K.: The continuous Anderson Hamiltonian in dimension two. arXiv:1511.02718v2

  6. Bao, W.: Mathematical models and numerical methods for Bose-Einstein condensation. In: Proceedings of the International Congress of Mathematicians, IV, pp. 971–996 (2014)

  7. Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat. Models 6, 1–135 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bao, W., Cai, Y., Zhao, X.: A uniformly accurate multiscale time integrator pseudospectral method for the Klein–Gordon equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 52, 2488–2511 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Besse, C., Bidégaray, B., Descombes, S.: Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40, 26–40 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bényi, Á., Oh, T.: Modulation spaces, Wiener amalgam spaces, and Brownian motions. Adv. Math. 228, 2943–2981 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bourgain, J., Wang, W.: Quasi-periodic solutions of nonlinear random Schrödinger equations. J. Eur. Math. Soc. 10, 1–45 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Bouard, A., Debussche, A.: A stochastic nonlinear Schrödinger equation with multiplicative noise. Commun. Math. Phys. 205, 161–181 (1999)

    Article  MATH  Google Scholar 

  13. de Bouard, A., Debussche, A.: A semi-discrete scheme for the stochastic nonlinear Schrödinger equation. Numer. Math. 96, 733–770 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bruned, Y., Schratz, K.: Resonance based schemes for dispersive equations via decorated trees. arXiv:2005.01649v1 [math.NA]

  15. Chen, C., Hong, J.: Symplectic Runge–Kutta semidiscretization for stochastic Schrödinger equation. SIAM J. Numer. Anal. 54, 2569–2593 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Conti, C.: Solitonization of the Anderson localization. Phys. Rev. A 86, 061801 (2012)

    Article  Google Scholar 

  17. Cui, J., Hong, J., Liu, Z., Zhou, W.: Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations. J. Differ. Equ. 266, 5625–5663 (2019)

    Article  MATH  Google Scholar 

  18. Debussche, A., Martin, J.: Solution to the stochastic Schrödinger equation on the full space. Nonlinearity 32, 1147–1174 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Debussche, A., Weber, H.: The Schrödinger equation with spatial white noise potential. Electron. J. Probab. 23, 1–16 (2018)

    Article  MATH  Google Scholar 

  20. Dumaz, L., Labbé, C.: Localization of the continuous Anderson Hamiltonian in 1-D. Probab. Theory Relat. Fields 176, 353–419 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Faou, E.: Geometric Numerical Integration and Schrödinger Equations. European Math. Soc. Publishing House, Zürich (2012)

    Book  MATH  Google Scholar 

  22. Henning, P., Peterseim, D.: Crank–Nicolson Galerkin approximations to nonlinear Schrödinger equations with rough potentials. Math. Models Methods Appl. Sci. 27, 2147–2184 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fishman, S., Krivolapov, Y., Soffer, A.: The nonlinear Schrödinger equation with a random potential: results and puzzles. Nonlinearity 25, 53–72 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fishman, S., Iomin, A., Mallick, K.: Asympotic localization of stationary states in the nonlinear Schrödinger equation. Phys. Rev. E 78, 066605 (2008)

    Article  MathSciNet  Google Scholar 

  25. Fishman, S., Soffer, A.: Multiscale time averaging, reloaded. SIAM J. Math. Anal. 46(2), 1385–1405 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Flach, S., Krimer, D.O., Skokos, Ch.: Universal spreading of wave packets in disordered nonlinear systems. Phys. Rev. Lett. 102, 024101 (2009)

    Article  Google Scholar 

  27. Germinet, F., Klein, A.: A comprehensive proof of localization for continuous Anderson models with singular random potentials. J. Eur. Math. Soc. 15, 53–143 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ghofraniha, N., Gentilini, S., Folli, V., Delre, E., Conti, C.: Shock waves in disordered media. Phys. Rev. Lett. 109, 243902 (2012)

    Article  Google Scholar 

  29. Gol’dshtein, I.Y., Molchanov, S.A., Pastur, L.A.: A pure point spectrum of the stochastic one-dimensional Schrödinger operator. Funct. Anal. Appl. 11, 1–8 (1977)

  30. Gradinaru, V.: Strang splitting for the time-dependent Schrödinger equation on sparse grids. SIAM J. Numer. Anal. 46, 103–123 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gu, Y., Komorowski, T., Ryzhik, L.: The Schrödinger equation with spatial white noise: the average wave function. J. Funct. Anal. 274, 2113–2138 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2006)

    MATH  Google Scholar 

  33. Kachman, T., Fishman, S., Soffer, A.: Numerical implementation of the multiscale and averaging methods for quasi periodic systems. Comput. Phys. Commun. 221, 235–245 (2017)

    Article  MathSciNet  Google Scholar 

  34. Knöller, M., Ostermann, A., Schratz, K.: A Fourier integrator for the cubic nonlinear Schrödinger equation with rough initial data. SIAM J. Numer. Anal. 57, 1967–1986 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Laskar, J., Robutel, Ph.: High order symplectic integrators for perturbed Hamiltonian systems. Celestial Mech. Dynam. Astronom. 80, 39–62 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, J.: A mass-preserving splitting scheme for the stochastic Schrödinger equation with multiplicative noise. IMA J. Numer. Anal. 33, 1469–1479 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lubich, Ch.: On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77, 2141–2153 (2008)

    Article  MATH  Google Scholar 

  38. McLachlan, R.I., Quispel, G.R.W.: Splitting methods. Acta Numer. 11, 341–434 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Michaely, E., Fishman, S.: Effective noise theory for the nonlinear Schrödinger equation with disorder. Phys. Rev. E 85, 046218 (2012)

    Article  Google Scholar 

  40. Ostermann, A., Schratz, K.: Low regularity exponential-type integrators for semilinear Schrödinger equations. Found. Comput. Math. 18, 731–755 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ostermann, A., Rousset, F., Schratz, K.: Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity. Found. Comput. Math. 21, 725–765 (2021)

  42. Piraud, M., Lugan, P., Bouyer, P., Aspect, A., Sanchez-Palencia, L.: Localization of a matter wave packet in a disordered potential. Phys. Rev. A 83, 031603 (2011)

    Article  Google Scholar 

  43. Pikovsky, A.S., Shepelyansky, D.L.: Destruction of Anderson localization by a weak nonlinearity. Phys. Rev. Lett. 100, 094101 (2008)

    Article  Google Scholar 

  44. Rodnianski, I., Schlag, W.: Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155, 451–513 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sanchez-Palencia, L., Clément, D., Lugan, P., Bouyer, P., Shlyapnikov, G.V., Aspect, A.: Anderson localization of expanding Bose–Einstein condensates in random potentials. Phys. Rev. Lett. 98, 210401 (2007)

    Article  Google Scholar 

  46. Sanz-Serna, J.M.: Methods for the numerical solution of the nonlinear Schrödinger equation. Math. Comput. 43, 21–27 (1984)

    Article  MATH  Google Scholar 

  47. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. Springer (2011)

  48. Skokos, Ch., Krimer, D.O., Komineas, S., Flach, S.: Delocalization of wave packets in disordered nonlinear chains. Phys. Rev. E 79, 056211 (2009)

    Article  MathSciNet  Google Scholar 

  49. Schwartz, T., Bartal, G., Fishman, S., Segev, M.: Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007)

    Article  Google Scholar 

  50. Sergey, N., Soffer, A., Tran, M.-B.: On the wave turbulence theory for the nonlinear Schrödinger equation with random potentials. Entropy 21, 823 (2019)

    Article  Google Scholar 

  51. Tao, T.: Nonlinear Dispersive Equations. Local and Global Analysis. Amer. Math. Soc, Providence (2006)

    Book  MATH  Google Scholar 

  52. Thalhammer, M.: Convergence analysis of higher-order time-splitting pseudo-spectral methods for nonlinear Schrödinger equations. SIAM J. Numer. Anal. 50, 3231–3258 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Veraar, M.C.: Regularity of Gaussian white noise on the \(d\)-dimensional torus. In: Proceedings of the Józef Marcinkiewicz centenary conference, Banach Center Publ., vol. 95, pp. 385–398 (2011)

  54. Wang, W., Zhang, Z.: Long time Anderson localization for nonlinear random Schrödinger equation. J. Stat. Phys. 134, 953 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wang, T., Zhao, X.: Optimal \(l^\infty \) error estimates of finite difference methods for the coupled Gross–Pitaevskii equations in high dimensions. Sci. China Math. 57, 2189–2214 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

X. Zhao is partially supported by the NSFC 11901440 and the Natural Science Foundation of Hubei Province No. 2019CFA007. We thank Prof. Avy Soffer for introducing the disordered problem and thank Prof. Katharina Schratz for communications on the numerical method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Schemes for the Discrete Model

Appendix A. Schemes for the Discrete Model

The splitting for (4.1) reads

$$\begin{aligned} \Phi _T^t:\quad \left\{ \begin{aligned}&i{\dot{v}}_l(t)=-J[ v_{l+1}(t)+v_{l-1}(t)],\quad t>0,\ -N\le l\le N,\\&v_l(0)=v_l^0, \quad -N\le l\le N, \end{aligned}\right. \end{aligned}$$
(A.2)

and

$$\begin{aligned} \Phi _V^t:\quad \left\{ \begin{aligned}&i{\dot{w}}_l(t)= \left( \xi _l+\lambda |w_l(t)|^2\right) w_l(t), \quad t>0,\ -N\le l\le N,\\&w_l(0)=w_l^0,\quad -N\le l\le N. \end{aligned}\right. \end{aligned}$$
(A.3)

For \(\Phi _T^t\), by taking Fourier transform

$$\begin{aligned} {\widehat{v}}_j(t)=\frac{1}{2N}\sum _{l=-N}^{N-1}\mathrm {e}^{-ijl\pi /N}v_l(t),\ -N\le j<N,\quad v_l(t)=\sum _{j=-N}^{N-1}\mathrm {e}^{ijl\pi /N}{\widehat{v}}_j(t),\ -N\le l<N, \end{aligned}$$

the equation in (A.2) is diagonalized and the exact solution is

$$\begin{aligned} v_l(t)=\sum _{j=-N}^{N-1}\mathrm {e}^{2itJ\cos (j\pi /N)} \mathrm {e}^{ijl\pi /N}\widehat{(v^0)}_j, \quad t\ge 0,\ -N\le l\le N, \end{aligned}$$

with \(v^0=(v^0_{-N},\ldots ,v^0_{N})\). For \(\Phi _T^t\), noting that \(|w_l(t)|\) is constant in t for all l in (A.3), so the exact solution is

$$\begin{aligned} w_l(t)=\mathrm {e}^{-it(\xi _l+\lambda |w_l^0|^2)}w_l^0,\quad t\ge 0,\ -N\le l\le N. \end{aligned}$$

Then the Strang splitting scheme can be written down same as the composition in (2.1).

The corresponding semi-implicit finite difference method is simply

$$\begin{aligned}&i\frac{u_l^{n+1}-u_l^{n-1}}{2\tau }=-\frac{J}{2} \left( u_{l+1}^{n+1}+u_{l-1}^{n+1}+u_{l+1}^{n-1}+u_{l-1}^{n-1}\right) +\xi _lu_l^{n}+\lambda |u_l^n|^2u_l^n,\quad n\ge 1, \end{aligned}$$

for \(-N\le l<N\) with

$$\begin{aligned}&u_l^1=u^0_l+iJ\tau \left( u^0_{l+1}+u^0_{l-1}\right) -i\tau \left( \xi _l+\lambda |u^0_l|^2\right) u^0_l,\quad -N\le l\le N,\\&u^n_{-N}=u^n_{N},\quad u^n_{-N-1}=u^n_{N-1},\quad n\ge 0. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X. Numerical Integrators for Continuous Disordered Nonlinear Schrödinger Equation. J Sci Comput 89, 40 (2021). https://doi.org/10.1007/s10915-021-01653-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01653-2

Keywords

Mathematics Subject Classification

Navigation