Abstract
In this paper, we consider the numerical solution of the continuous disordered nonlinear Schrödinger equation, which contains a spatial random potential. We address the finite time accuracy order reduction issue of the usual numerical integrators on this problem, which is due to the presence of the random/rough potential. By using the recently proposed low-regularity integrator (LRI) from (33, SIAM J Numer Anal, 2019), we show how to integrate the potential term by losing two spatial derivatives. Convergence analysis is done to show that LRI has the second order accuracy in \(L^2\)-norm for potentials in \(H^2\). Numerical experiments are done to verify this theoretical result. More numerical results are presented to investigate the accuracy of LRI compared with classical methods under rougher random potentials from applications.
Similar content being viewed by others
References
Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59, 31–53 (1991)
Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)
Antoine, X., Bao, W., Besse, C.: Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations. Comput. Phys. Commun. 184, 2621–2633 (2013)
Anton, R., Cohen, D.: Exponential integrators for stochastic Schrödinger equations driven by Itô noise. J. Comput. Math. 36, 276–309 (2018)
Allez, R., Chouk, K.: The continuous Anderson Hamiltonian in dimension two. arXiv:1511.02718v2
Bao, W.: Mathematical models and numerical methods for Bose-Einstein condensation. In: Proceedings of the International Congress of Mathematicians, IV, pp. 971–996 (2014)
Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat. Models 6, 1–135 (2013)
Bao, W., Cai, Y., Zhao, X.: A uniformly accurate multiscale time integrator pseudospectral method for the Klein–Gordon equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 52, 2488–2511 (2014)
Besse, C., Bidégaray, B., Descombes, S.: Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40, 26–40 (2002)
Bényi, Á., Oh, T.: Modulation spaces, Wiener amalgam spaces, and Brownian motions. Adv. Math. 228, 2943–2981 (2011)
Bourgain, J., Wang, W.: Quasi-periodic solutions of nonlinear random Schrödinger equations. J. Eur. Math. Soc. 10, 1–45 (2008)
de Bouard, A., Debussche, A.: A stochastic nonlinear Schrödinger equation with multiplicative noise. Commun. Math. Phys. 205, 161–181 (1999)
de Bouard, A., Debussche, A.: A semi-discrete scheme for the stochastic nonlinear Schrödinger equation. Numer. Math. 96, 733–770 (2004)
Bruned, Y., Schratz, K.: Resonance based schemes for dispersive equations via decorated trees. arXiv:2005.01649v1 [math.NA]
Chen, C., Hong, J.: Symplectic Runge–Kutta semidiscretization for stochastic Schrödinger equation. SIAM J. Numer. Anal. 54, 2569–2593 (2016)
Conti, C.: Solitonization of the Anderson localization. Phys. Rev. A 86, 061801 (2012)
Cui, J., Hong, J., Liu, Z., Zhou, W.: Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations. J. Differ. Equ. 266, 5625–5663 (2019)
Debussche, A., Martin, J.: Solution to the stochastic Schrödinger equation on the full space. Nonlinearity 32, 1147–1174 (2019)
Debussche, A., Weber, H.: The Schrödinger equation with spatial white noise potential. Electron. J. Probab. 23, 1–16 (2018)
Dumaz, L., Labbé, C.: Localization of the continuous Anderson Hamiltonian in 1-D. Probab. Theory Relat. Fields 176, 353–419 (2020)
Faou, E.: Geometric Numerical Integration and Schrödinger Equations. European Math. Soc. Publishing House, Zürich (2012)
Henning, P., Peterseim, D.: Crank–Nicolson Galerkin approximations to nonlinear Schrödinger equations with rough potentials. Math. Models Methods Appl. Sci. 27, 2147–2184 (2017)
Fishman, S., Krivolapov, Y., Soffer, A.: The nonlinear Schrödinger equation with a random potential: results and puzzles. Nonlinearity 25, 53–72 (2012)
Fishman, S., Iomin, A., Mallick, K.: Asympotic localization of stationary states in the nonlinear Schrödinger equation. Phys. Rev. E 78, 066605 (2008)
Fishman, S., Soffer, A.: Multiscale time averaging, reloaded. SIAM J. Math. Anal. 46(2), 1385–1405 (2014)
Flach, S., Krimer, D.O., Skokos, Ch.: Universal spreading of wave packets in disordered nonlinear systems. Phys. Rev. Lett. 102, 024101 (2009)
Germinet, F., Klein, A.: A comprehensive proof of localization for continuous Anderson models with singular random potentials. J. Eur. Math. Soc. 15, 53–143 (2013)
Ghofraniha, N., Gentilini, S., Folli, V., Delre, E., Conti, C.: Shock waves in disordered media. Phys. Rev. Lett. 109, 243902 (2012)
Gol’dshtein, I.Y., Molchanov, S.A., Pastur, L.A.: A pure point spectrum of the stochastic one-dimensional Schrödinger operator. Funct. Anal. Appl. 11, 1–8 (1977)
Gradinaru, V.: Strang splitting for the time-dependent Schrödinger equation on sparse grids. SIAM J. Numer. Anal. 46, 103–123 (2007)
Gu, Y., Komorowski, T., Ryzhik, L.: The Schrödinger equation with spatial white noise: the average wave function. J. Funct. Anal. 274, 2113–2138 (2018)
Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2006)
Kachman, T., Fishman, S., Soffer, A.: Numerical implementation of the multiscale and averaging methods for quasi periodic systems. Comput. Phys. Commun. 221, 235–245 (2017)
Knöller, M., Ostermann, A., Schratz, K.: A Fourier integrator for the cubic nonlinear Schrödinger equation with rough initial data. SIAM J. Numer. Anal. 57, 1967–1986 (2019)
Laskar, J., Robutel, Ph.: High order symplectic integrators for perturbed Hamiltonian systems. Celestial Mech. Dynam. Astronom. 80, 39–62 (2001)
Liu, J.: A mass-preserving splitting scheme for the stochastic Schrödinger equation with multiplicative noise. IMA J. Numer. Anal. 33, 1469–1479 (2013)
Lubich, Ch.: On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77, 2141–2153 (2008)
McLachlan, R.I., Quispel, G.R.W.: Splitting methods. Acta Numer. 11, 341–434 (2002)
Michaely, E., Fishman, S.: Effective noise theory for the nonlinear Schrödinger equation with disorder. Phys. Rev. E 85, 046218 (2012)
Ostermann, A., Schratz, K.: Low regularity exponential-type integrators for semilinear Schrödinger equations. Found. Comput. Math. 18, 731–755 (2018)
Ostermann, A., Rousset, F., Schratz, K.: Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity. Found. Comput. Math. 21, 725–765 (2021)
Piraud, M., Lugan, P., Bouyer, P., Aspect, A., Sanchez-Palencia, L.: Localization of a matter wave packet in a disordered potential. Phys. Rev. A 83, 031603 (2011)
Pikovsky, A.S., Shepelyansky, D.L.: Destruction of Anderson localization by a weak nonlinearity. Phys. Rev. Lett. 100, 094101 (2008)
Rodnianski, I., Schlag, W.: Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155, 451–513 (2004)
Sanchez-Palencia, L., Clément, D., Lugan, P., Bouyer, P., Shlyapnikov, G.V., Aspect, A.: Anderson localization of expanding Bose–Einstein condensates in random potentials. Phys. Rev. Lett. 98, 210401 (2007)
Sanz-Serna, J.M.: Methods for the numerical solution of the nonlinear Schrödinger equation. Math. Comput. 43, 21–27 (1984)
Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. Springer (2011)
Skokos, Ch., Krimer, D.O., Komineas, S., Flach, S.: Delocalization of wave packets in disordered nonlinear chains. Phys. Rev. E 79, 056211 (2009)
Schwartz, T., Bartal, G., Fishman, S., Segev, M.: Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007)
Sergey, N., Soffer, A., Tran, M.-B.: On the wave turbulence theory for the nonlinear Schrödinger equation with random potentials. Entropy 21, 823 (2019)
Tao, T.: Nonlinear Dispersive Equations. Local and Global Analysis. Amer. Math. Soc, Providence (2006)
Thalhammer, M.: Convergence analysis of higher-order time-splitting pseudo-spectral methods for nonlinear Schrödinger equations. SIAM J. Numer. Anal. 50, 3231–3258 (2012)
Veraar, M.C.: Regularity of Gaussian white noise on the \(d\)-dimensional torus. In: Proceedings of the Józef Marcinkiewicz centenary conference, Banach Center Publ., vol. 95, pp. 385–398 (2011)
Wang, W., Zhang, Z.: Long time Anderson localization for nonlinear random Schrödinger equation. J. Stat. Phys. 134, 953 (2009)
Wang, T., Zhao, X.: Optimal \(l^\infty \) error estimates of finite difference methods for the coupled Gross–Pitaevskii equations in high dimensions. Sci. China Math. 57, 2189–2214 (2014)
Acknowledgements
X. Zhao is partially supported by the NSFC 11901440 and the Natural Science Foundation of Hubei Province No. 2019CFA007. We thank Prof. Avy Soffer for introducing the disordered problem and thank Prof. Katharina Schratz for communications on the numerical method.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A. Schemes for the Discrete Model
Appendix A. Schemes for the Discrete Model
The splitting for (4.1) reads
and
For \(\Phi _T^t\), by taking Fourier transform
the equation in (A.2) is diagonalized and the exact solution is
with \(v^0=(v^0_{-N},\ldots ,v^0_{N})\). For \(\Phi _T^t\), noting that \(|w_l(t)|\) is constant in t for all l in (A.3), so the exact solution is
Then the Strang splitting scheme can be written down same as the composition in (2.1).
The corresponding semi-implicit finite difference method is simply
for \(-N\le l<N\) with
Rights and permissions
About this article
Cite this article
Zhao, X. Numerical Integrators for Continuous Disordered Nonlinear Schrödinger Equation. J Sci Comput 89, 40 (2021). https://doi.org/10.1007/s10915-021-01653-2
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01653-2
Keywords
- Disordered nonlinear Schrödinger equation
- Spatial random potential
- Numerical integrators
- Low-regularity
- Accuracy