Abstract
We study the bottom of the spectrum of the Anderson Hamiltonian \({\mathcal {H}}_L := -\partial _x^2 + \xi \) on [0, L] driven by a white noise \(\xi \) and endowed with either Dirichlet or Neumann boundary conditions. We show that, as \(L\rightarrow \infty \), the point process of the (appropriately shifted and rescaled) eigenvalues converges to a Poisson point process on \(\mathbf{R}\) with intensity \(e^x dx\), and that the (appropriately rescaled) eigenfunctions converge to Dirac masses located at independent and uniformly distributed points. Furthermore, we show that the shape of each eigenfunction, recentered around its maximum and properly rescaled, is given by the inverse of a hyperbolic cosine. We also show that the eigenfunctions decay exponentially from their localization centers at an explicit rate, and we obtain very precise information on the zeros and local maxima of these eigenfunctions. Finally, we show that the eigenvalues/eigenfunctions in the Dirichlet and Neumann cases are very close to each other and converge to the same limits.
Similar content being viewed by others
References
Allez, R., Chouk, K.: The continuous Anderson Hamiltonian in dimension two. ArXiv e-prints (2015). arXiv:1511.02718
Allez, R., Dumaz, L.: From sine kernel to Poisson statistics. Electron. J. Probab. 19(114), 25 (2014). https://doi.org/10.1214/EJP.v19-3742
Allez, R., Dumaz, L.: Tracy–Widom at high temperature. J. Stat. Phys. 156(6), 1146–1183 (2014). https://doi.org/10.1007/s10955-014-1058-z
Allez, R., Dumaz, L.: Random matrices in non-confining potentials. J. Stat. Phys. 160(3), 681–714 (2015). https://doi.org/10.1007/s10955-015-1258-1
Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492–1505 (1958). https://doi.org/10.1103/PhysRev.109.1492
Biskup, M., König, W.: Eigenvalue order statistics for random Schrödinger operators with doubly-exponential tails. Commun. Math. Phys. 341(1), 179–218 (2016). https://doi.org/10.1007/s00220-015-2430-9
Borodin, A.N., Salminen, P.: Handbook of Brownian Motion-Facts and Formulae. Probability and Its Applications, 2nd edn. Birkhäuser Verlag, Basel (2002)
Bloemendal, A., Virág, B.: Limits of spiked random matrices II. Ann. Probab. 44(4), 2726–2769 (2016). https://doi.org/10.1214/15-AOP1033
Carmona, R., Klein, A., Martinelli, F.: Anderson localization for Bernoulli and other singular potentials. Commun. Math. Phys. 108(1), 41–66 (1987)
Cambronero, S., McKean, H.P.: The ground state Eigenvalue of Hill’s equation with white noise potential. Commun. Pure Appl. Math. 52(10), 1277–1294 (1999). https://doi.org/10.1002/(SICI)1097-0312(199910)52:10<1277::AID-CPA5>3.0.CO;2-L
Cambronero, S., Rider, B., Ramírez, J.: On the shape of the ground state eigenvalue density of a random Hill’s equation. Commun. Pure Appl. Math. 59(7), 935–976 (2006). https://doi.org/10.1002/cpa.20104
Dumaz, L., Virág, B.: The right tail exponent of the Tracy–Widom \(\beta \) distribution. Ann. Inst. Henri Poincaré Probab. Stat. 49(4), 915–933 (2013). https://doi.org/10.1214/11-AIHP475
Frisch, H.L., Lloyd, S.P.: Electron levels in a one-dimensional random lattice. Phys. Rev. 120, 1175–1189 (1960). https://doi.org/10.1103/PhysRev.120.1175
Fukushima, M., Nakao, S.: On spectra of the Schrödinger operator with a white Gaussian noise potential. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 37(3), 267–274 (1976/77)
Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum Math. Pi 3, e6, 75 (2015). arXiv:1210.2684. https://doi.org/10.1017/fmp.2015.2
Goldsheid, I.J., Molcanov, S.A., Pastur, L.A.: A random homogeneous Schrödinger operator has a pure point spectrum. Funkcional. Anal. i Priložen. 11(1), 1–10 (1977). 96
Gubinelli, M., Ugurcan, B., Zachhuber, I.: Semilinear evolution equations for the Anderson Hamiltonian in two and three dimensions. ArXiv e-prints (2018). arXiv:1807.06825
Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014). arXiv:1303.5113. https://doi.org/10.1007/s00222-014-0505-4
Halperin, B.I.: Green’s functions for a particle in a one-dimensional random potential. Phys. Rev. (2) 139, A104–A117 (1965)
König, W.: The Parabolic Anderson Model. Pathways in Mathematics. Random Walk in Random Potential. Birkhäuser/Springer, Cham (2016)
Kallenberg, O.: Foundations of Modern Probability. Probability and Its Applications (New York), 2nd edn. Springer, New York (2002)
Kirsch, W.: An invitation to random Schrödinger operators. In Random Schrödinger operators, vol. 25 of Panor. Synthèses, 1–119. Soc. Math. France, Paris, 2008. With an appendix by Frédéric Klopp
Killip, R., Nakano, F.: Eigenfunction statistics in the localized Anderson model. Ann. Henri Poincaré 8(1), 27–36 (2007). https://doi.org/10.1007/s00023-006-0298-0
Killip, R., Stoiciu, M.: Eigenvalue statistics for CMV matrices: from Poisson to clock via random matrix ensembles. Duke Math. J. 146(3), 361–399 (2009). https://doi.org/10.1215/00127094-2009-001
Kunz, H., Souillard, B.: Sur le spectre des opérateurs aux différences finies aléatoires. Commun. Math. Phys. 78(2), 201–246 (1980/81)
Kritchevski, E., Valkó, B., Virág, B.: The scaling limit of the critical one-dimensional random Schrödinger operator. Commun. Math. Phys. 314(3), 775–806 (2012). https://doi.org/10.1007/s00220-012-1537-5
Labbé, C.: The continuous Anderson Hamiltonian in \(d\le 3\). ArXiv e-prints (2018). arXiv:1809.03718
McKean, H.P.: A limit law for the ground state of Hill’s equation. J. Stat. Phys. 74(5–6), 1227–1232 (1994). https://doi.org/10.1007/BF02188225
Minami, N.: Local fluctuation of the spectrum of a multidimensional Anderson tight binding model. Commun. Math. Phys. 177(3), 709–725 (1996)
Molčanov, S.A: The local structure of the spectrum of the one-dimensional Schrödinger operator. Commun. Math. Phys. 78(3), 429–446 (1980/81)
Otto, F., Weber, H., Westdickenberg, M.G.: Invariant measure of the stochastic Allen–Cahn equation: the regime of small noise and large system size. Electron. J. Probab. 19(23), 76 (2014). https://doi.org/10.1214/EJP.v19-2813
Ramírez, J.A., Rider, B.: Diffusion at the random matrix hard edge. Commun. Math. Phys. 288(3), 887–906 (2009). https://doi.org/10.1007/s00220-008-0712-1
Ramírez, J.A., Rider, B., Virág, B.: Beta ensembles, stochastic airy spectrum, and a diffusion. J. Am. Math. Soc. 24(4), 919–944 (2011). https://doi.org/10.1090/S0894-0347-2011-00703-0
Rifkind, B., Virág, B.: Eigenvectors of the critical 1-dimensional random Schrödinger operator. ArXiv e-prints (2016). arXiv:1605.00118
Revuz, D., Yor, M.: Continuous martingales and Brownian motion. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, 3rd edn. Springer, Berlin (1999)
Texier, C.: Individual energy level distributions for one-dimensional diagonal and off-diagonal disorder. J. Phys. A 33(35), 6095–6128 (2000). https://doi.org/10.1088/0305-4470/33/35/303
Valkó, B., Virág, B.: Continuum limits of random matrices and the Brownian carousel. Invent. Math. 177(3), 463–508 (2009). https://doi.org/10.1007/s00222-009-0180-z
Acknowledgements
We thank the anonymous referees for their careful reading of the paper and their helpful remarks. LD thanks Romain Allez and Benedek Valkó for useful discussions. The work of LD is supported by the project MALIN ANR-16-CE93-0003. CL is grateful to Julien Reygner for several useful comments on a preliminary version of this paper. The work of CL is supported by the project SINGULAR ANR-16-CE40-0020-01.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dumaz, L., Labbé, C. Localization of the continuous Anderson Hamiltonian in 1-D. Probab. Theory Relat. Fields 176, 353–419 (2020). https://doi.org/10.1007/s00440-019-00920-6
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00440-019-00920-6