Abstract
Using the approach based on conformal symmetry we calculate the three-loop (NNLO) contribution to the evolution equation for flavor-nonsinglet leading twist operators in the \( \overline{\mathrm{MS}} \) scheme. The explicit expression for the three-loop kernel is derived for the corresponding light-ray operator in coordinate space. The expansion in local operators is performed and explicit results are given for the matrix of the anomalous dimensions for the operators up to seven covariant derivatives. The results are directly applicable to the renormalization of the pion light-cone distribution amplitude and flavor-nonsinglet generalized parton distributions.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
D. Boer et al., Gluons and the quark sea at high energies: Distributions, polarization, tomography, arXiv:1108.1713 [INSPIRE].
J. Dudek et al., Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab, Eur. Phys. J. A 48 (2012) 187 [arXiv:1208.1244] [INSPIRE].
Belle-II collaboration, T. Abe et al., Belle II Technical Design Report, arXiv:1011.0352 [INSPIRE].
A. Accardi et al., A Critical Appraisal and Evaluation of Modern PDFs, Eur. Phys. J. C 76 (2016) 471 [arXiv:1603.08906] [INSPIRE].
V.M. Braun et al., Second Moment of the Pion Light-cone Distribution Amplitude from Lattice QCD, Phys. Rev. D 92 (2015) 014504 [arXiv:1503.03656] [INSPIRE].
S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: The nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].
D. Müller, Constraints for anomalous dimensions of local light cone operators in ϕ 3 in six-dimensions theory, Z. Phys. C 49 (1991) 293 [INSPIRE].
D. Müller, Conformal constraints and the evolution of the nonsinglet meson distribution amplitude, Phys. Rev. D 49 (1994) 2525 [INSPIRE].
D. Müller, Restricted conformal invariance in QCD and its predictive power for virtual two photon processes, Phys. Rev. D 58 (1998) 054005 [hep-ph/9704406] [INSPIRE].
A.V. Belitsky and D. Müller, Predictions from conformal algebra for the deeply virtual Compton scattering, Phys. Lett. B 417 (1998) 129 [hep-ph/9709379] [INSPIRE].
A.V. Belitsky and D. Müller, Next-to-leading order evolution of twist-2 conformal operators: The Abelian case, Nucl. Phys. B 527 (1998) 207 [hep-ph/9802411] [INSPIRE].
A.V. Belitsky, A. Freund and D. Müller, Evolution kernels of skewed parton distributions: Method and two loop results, Nucl. Phys. B 574 (2000) 347 [hep-ph/9912379] [INSPIRE].
A.V. Belitsky and D. Müller, Broken conformal invariance and spectrum of anomalous dimensions in QCD, Nucl. Phys. B 537 (1999) 397 [hep-ph/9804379] [INSPIRE].
V.M. Braun and A.N. Manashov, Evolution equations beyond one loop from conformal symmetry, Eur. Phys. J. C 73 (2013) 2544 [arXiv:1306.5644] [INSPIRE].
V.M. Braun and A.N. Manashov, Two-loop evolution equations for light-ray operators, Phys. Lett. B 734 (2014) 137 [arXiv:1404.0863] [INSPIRE].
V.M. Braun, A.N. Manashov, S. Moch and M. Strohmaier, Two-loop conformal generators for leading-twist operators in QCD, JHEP 03 (2016) 142 [arXiv:1601.05937] [INSPIRE].
Yu.L. Dokshitzer, G. Marchesini and G.P. Salam, Revisiting parton evolution and the large-x limit, Phys. Lett. B 634 (2006) 504 [hep-ph/0511302] [INSPIRE].
B. Basso and G.P. Korchemsky, Anomalous dimensions of high-spin operators beyond the leading order, Nucl. Phys. B 775 (2007) 1 [hep-th/0612247] [INSPIRE].
L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP 11 (2015) 101 [arXiv:1502.07707] [INSPIRE].
L.F. Alday and A. Zhiboedov, An Algebraic Approach to the Analytic Bootstrap, JHEP 04 (2017) 157 [arXiv:1510.08091] [INSPIRE].
P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Quark Mass and Field Anomalous Dimensions to \( \mathcal{O}\left({\alpha}_s^5\right) \), JHEP 10 (2014) 076 [arXiv:1402.6611] [INSPIRE].
P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-Loop Running of the QCD coupling constant, Phys. Rev. Lett. 118 (2017) 082002 [arXiv:1606.08659] [INSPIRE].
T. Luthe, A. Maier, P. Marquard and Y. Schröder, Five-loop quark mass and field anomalous dimensions for a general gauge group, JHEP 01 (2017) 081 [arXiv:1612.05512] [INSPIRE].
T. Luthe, A. Maier, P. Marquard and Y. Schröder, Complete renormalization of QCD at five loops, JHEP 03 (2017) 020 [arXiv:1701.07068] [INSPIRE].
P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-loop fermion anomalous dimension for a general gauge group from four-loop massless propagators, JHEP 04 (2017) 119 [arXiv:1702.01458] [INSPIRE].
I.I. Balitsky and V.M. Braun, Evolution Equations for QCD String Operators, Nucl. Phys. B 311 (1989) 541 [INSPIRE].
V.M. Braun, S.E. Derkachov, G.P. Korchemsky and A.N. Manashov, Baryon distribution amplitudes in QCD, Nucl. Phys. B 553 (1999) 355 [hep-ph/9902375] [INSPIRE].
A.P. Bukhvostov, G.V. Frolov, L.N. Lipatov and E.A. Kuraev, Evolution Equations for Quasi-Partonic Operators, Nucl. Phys. B 258 (1985) 601 [INSPIRE].
E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
V.M. Braun and A.N. Manashov, Operator product expansion in QCD in off-forward kinematics: Separation of kinematic and dynamical contributions, JHEP 01 (2012) 085 [arXiv:1111.6765] [INSPIRE].
D. Müller and A. Schäfer, Complex conformal spin partial wave expansion of generalized parton distributions and distribution amplitudes, Nucl. Phys. B 739 (2006) 1 [hep-ph/0509204] [INSPIRE].
M. Kirch, A. Manashov and A. Schäfer, Evolution equation for generalized parton distributions, Phys. Rev. D 72 (2005) 114006 [hep-ph/0509330] [INSPIRE].
D. Müller, Next-to-next-to leading order corrections to deeply virtual Compton scattering: The non-singlet case, Phys. Lett. B 634 (2006) 227 [hep-ph/0510109] [INSPIRE].
K. Kumerički, D. Müller, K. Passek-Kumerički and A. Schäfer, Deeply virtual Compton scattering beyond next-to-leading order: the flavor singlet case, Phys. Lett. B 648 (2007) 186 [hep-ph/0605237] [INSPIRE].
K. Kumerički, D. Müller and K. Passek-Kumerički, Towards a fitting procedure for deeply virtual Compton scattering at next-to-leading order and beyond, Nucl. Phys. B 794 (2008) 244 [hep-ph/0703179] [INSPIRE].
D. Müller, T. Lautenschlager, K. Passek-Kumerički and A. Schäfer, Towards a fitting procedure to deeply virtual meson production — the next-to-leading order case, Nucl. Phys. B 884 (2014) 438 [arXiv:1310.5394] [INSPIRE].
G. Duplančič, D. Müller and K. Passek-Kumerički, Next-to-leading order corrections to deeply virtual production of pseudoscalar mesons, arXiv:1612.01937 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1703.09532
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Braun, V.M., Manashov, A.N., Moch, S. et al. Three-loop evolution equation for flavor-nonsinglet operators in off-forward kinematics. J. High Energ. Phys. 2017, 37 (2017). https://doi.org/10.1007/JHEP06(2017)037
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2017)037