Abstract
We extend the \( \mathcal{O}\left({\alpha}_s^5\right) \) result of the analytic calculation of the quark mass anomalous dimension in pQCD [1] to the case of a generic gauge group. We present explicit formulas which express the relevant renormalization constants in terms of four-loop massless propagators. We also use our result to shed new light on the old puzzle of the absence of even zetas in results of perturbative calculations for a class of physical observables.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Quark Mass and Field Anomalous Dimensions to \( \mathcal{O}\left({\alpha}_s^5\right) \), JHEP 10 (2014) 076 [arXiv:1402.6611] [INSPIRE].
R. Tarrach, The Pole Mass in Perturbative QCD, Nucl. Phys. B 183 (1981) 384 [INSPIRE].
O. Tarasov, Anomalous Dimensions Of Quark Masses In Three Loop Approximation, JINR-P2-82-900 (1982) [INSPIRE].
S.A. Larin, The Renormalization of the axial anomaly in dimensional regularization, Phys. Lett. B 303 (1993) 113 [hep-ph/9302240] [INSPIRE].
K.G. Chetyrkin, Quark mass anomalous dimension to O(α 4 s ), Phys. Lett. B 404 (1997) 161 [hep-ph/9703278] [INSPIRE].
J.A.M. Vermaseren, S.A. Larin and T. van Ritbergen, The four loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327 [hep-ph/9703284] [INSPIRE].
P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Towards QCD running in 5 loops: quark mass anomalous dimension, PoS (RADCOR 2013) 056 [arXiv:1402.6606] [INSPIRE].
P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-Loop Running of the QCD coupling constant, Phys. Rev. Lett. 118 (2017) 082002 [arXiv:1606.08659] [INSPIRE].
P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, The β-function of Quantum Chromodynamics and the effective Higgs-gluon-gluon coupling in five-loop order, PoS (LL2016) 010 [INSPIRE].
K. Chetyrkin and J.H. Kühn, Precision Measurements in Electron-Positron Annihilation: Theory and Experiment, PoS (LL2016) 047 [arXiv:1607.08374] [INSPIRE].
G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].
W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep Inelastic Scattering Beyond the Leading Order in Asymptotically Free Gauge Theories, Phys. Rev. D 18 (1978) 3998 [INSPIRE].
K.G. Chetyrkin, J.H. Kühn and A. Kwiatkowski, QCD corrections to the e + e − cross-section and the Z boson decay rate, hep-ph/9503396 [INSPIRE].
A.A. Vladimirov, Method for Computing Renormalization Group Functions in Dimensional Renormalization Scheme, Theor. Math. Phys. 43 (1980) 417 [INSPIRE].
D.I. Kazakov, O.V. Tarasov and A.A. Vladimirov, Calculation of Critical Exponents by Quantum Field Theory Methods, Sov. Phys. JETP 50 (1979) 521 [INSPIRE].
K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, New Approach to Evaluation of Multiloop Feynman Integrals: The Gegenbauer Polynomial x Space Technique, Nucl. Phys. B 174 (1980) 345 [INSPIRE].
O.V. Tarasov, A.A. Vladimirov and A.Yu. Zharkov, The Gell-Mann-Low Function of QCD in the Three Loop Approximation, Phys. Lett. B 93 (1980) 429 [INSPIRE].
K.G. Chetyrkin and V.A. Smirnov, R ∗ operation corrected, Phys. Lett. B 144 (1984) 419 [INSPIRE].
K.G. Chetyrkin, Corrections of order α 3 s to R had in pQCD with light gluinos, Phys. Lett. B 391 (1997) 402 [hep-ph/9608480] [INSPIRE].
N.N. Bogoliubov and O.S. Parasiuk, On the Multiplication of the causal function in the quantum theory of fields, Acta Math. 97 (1957) 227.
N. Bogoliubov and D. Shirkov, Introduction to the Theory of Quantized Fields, 3rd edition, John Wiley & Sons Inc. (1980).
K.G. Chetyrkin, Combinatorics of R-, R −1 - and R ∗ -operations and asymptotic expansions of Feynman integrals in the limit of large momenta and masses, arXiv:1701.08627 [INSPIRE].
D.V. Batkovich and M. Kompaniets, Toolbox for multiloop Feynman diagrams calculations using R ∗ operation, J. Phys. Conf. Ser. 608 (2015) 012068 [arXiv:1411.2618] [INSPIRE].
P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].
P.A. Baikov and K.G. Chetyrkin, Four Loop Massless Propagators: An Algebraic Evaluation of All Master Integrals, Nucl. Phys. B 837 (2010) 186 [arXiv:1004.1153] [INSPIRE].
R.N. Lee, A.V. Smirnov and V.A. Smirnov, Master Integrals for Four-Loop Massless Propagators up to Transcendentality Weight Twelve, Nucl. Phys. B 856 (2012) 95 [arXiv:1108.0732] [INSPIRE].
A.V. Smirnov and M. Tentyukov, Four Loop Massless Propagators: a Numerical Evaluation of All Master Integrals, Nucl. Phys. B 837 (2010) 40 [arXiv:1004.1149] [INSPIRE].
R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
T. Ueda, B. Ruijl and J.A.M. Vermaseren, Forcer: a FORM program for 4-loop massless propagators, PoS (LL2016) 070 [arXiv:1607.07318] [INSPIRE].
F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, FORM, Diagrams and Topologies, PoS (LL2016) 073 [arXiv:1608.01834] [INSPIRE].
P.A. Baikov, A practical criterion of irreducibility of multi-loop Feynman integrals, Phys. Lett. B 634 (2006) 325 [hep-ph/0507053] [INSPIRE].
P.A. Baikov, Explicit solutions of the three loop vacuum integral recurrence relations, Phys. Lett. B 385 (1996) 404 [hep-ph/9603267] [INSPIRE].
J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
M. Steinhauser, T. Ueda and J.A.M. Vermaseren, Parallel versions of FORM and more, Nucl. Part. Phys. Proc. 261-262 (2015) 45 [arXiv:1501.07119] [INSPIRE].
W.E. Caswell and A.D. Kennedy, A simple approach to renormalization theory, Phys. Rev. D 25 (1982) 392 [INSPIRE].
J.C. Collins, Normal Products in Dimensional Regularization, Nucl. Phys. B 92 (1975) 477 [INSPIRE].
M. Misiak and M. Münz, Two loop mixing of dimension five flavor changing operators, Phys. Lett. B 344 (1995) 308 [hep-ph/9409454] [INSPIRE].
T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The Four loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].
K.G. Chetyrkin, M. Misiak and M. Münz, β-functions and anomalous dimensions up to three loops, Nucl. Phys. B 518 (1998) 473 [hep-ph/9711266] [INSPIRE].
T. Luthe, A. Maier, P. Marquard and Y. Schröder, Five-loop quark mass and field anomalous dimensions for a general gauge group, JHEP 01 (2017) 081 [arXiv:1612.05512] [INSPIRE].
T. Luthe, A. Maier, P. Marquard and Y. Schröder, Complete renormalization of QCD at five loops, JHEP 03 (2017) 020 [arXiv:1701.07068] [INSPIRE].
A.A. Vladimirov, Methods of Multiloop Calculations and the Renormalization Group Analysis of ϕ 4 Theory, Theor. Math. Phys. 36 (1979) 732 [INSPIRE].
K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, Higher Order Corrections to σ tot(e + e − → Hadrons) in Quantum Chromodynamics, Phys. Lett. B 85 (1979) 277 [INSPIRE].
S.G. Gorishnii, A.L. Kataev and S.A. Larin, The O(α 3 s )-corrections to σ tot(e + e − → hadrons) and Γ(τ − → ν τ + hadrons) in QCD, Phys. Lett. B 259 (1991) 144 [INSPIRE].
F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, The five-loop β-function of Yang-Mills theory with fermions, JHEP 02 (2017) 090 [arXiv:1701.01404] [INSPIRE].
T. van Ritbergen, A.N. Schellekens and J.A.M. Vermaseren, Group theory factors for Feynman diagrams, Int. J. Mod. Phys. A 14 (1999) 41 [hep-ph/9802376] [INSPIRE].
P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Adler Function, Bjorken Sum Rule and the Crewther Relation to Order α 4 s in a General Gauge Theory, Phys. Rev. Lett. 104 (2010) 132004 [arXiv:1001.3606] [INSPIRE].
D.J. Broadhurst, Dimensionally continued multiloop gauge theory, hep-th/9909185 [INSPIRE].
P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Scalar correlator at \( \mathcal{O}\left({\alpha}_s^4\right) \) , Higgs decay into b-quarks and bounds on the light quark masses, Phys. Rev. Lett. 96 (2006) 012003 [hep-ph/0511063] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1702.01458
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Baikov, P., Chetyrkin, K. & Kühn, J. Five-loop fermion anomalous dimension for a general gauge group from four-loop massless propagators. J. High Energ. Phys. 2017, 119 (2017). https://doi.org/10.1007/JHEP04(2017)119
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP04(2017)119