Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Progress in millimeter-wave fiber-radio access networks

ÉVolution des RÉseaux D’accÈs Hertziens Combinant Ondes MillimÉtriques et Signal RadioÉlectrique sur Fibres Optiques

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

Future radio access networks operating at millimeter-wave frequencies have the capacity to offer broadband interactive services to a customer base requiring untethered access. Optical fiber-feed networks incorporating wavelength division multiplexing have been proposed as a backbone network providing full-duplex interconnectivity between multiple remote antenna basestations and a central office implementing a variety of switching and routing functions. Rapid developments in both lightwave and microwave enabling technologies have fuelled an intense effort into the research and development of these networks. In this paper, we present a review of the progress of millimeter-wave fiber-radio networks in the areas of the associated enabling technologies, sub-systems and system demonstrations.

Résumé

Les réseaux ďaccès hertziens en ondes millimétriques vont permettre ďoffrir des services interactifs à large bande aux clients demandant un accès sans fil. Pour la communication entre les stations de base distantes et le central disposant de diverses fonctions de commutation et de routage, on a proposé des réseaux de distribution en fibres optiques assurant une transmission duplex et mettant en ceuvre un multiplexage en longueur ďonde. Les évolutions rapides des techniques optiques et hyperfréquences è large bande ont donné un élan important è la recherche. Cette article passe en revue de récentes avancées en matière de réseaux ďaccès combinant fibres et ondes millimétriques. Il traite, en particulier, les aspects système et sous-système.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ogawa (H.), Polifko (D.), Banba (S.), Millimeter-wave fiber optics systems for personal radio communications,ieee Trans. Micro, Thy & Tech. (1992),40, pp. 2285–2293.

    Article  Google Scholar 

  2. Gray (D.), Optimal cell deployment for lmds systems at 28 GHz, Proc,Wireless Broadband Conf. (1996), Washington DC, USA.

  3. Schmuck (H.), Comparison of optical millimetre-wave system concepts with regard to chromatic dispersion,Electron. Lett. (1995), 31, n° 21, pp. 1848–1849.

    Article  Google Scholar 

  4. Gliese (U.), Nørskov (S.), Nielsen (T.N.), Chromatic dispersion in fiber-optic microwave and millimeter-wave links,ieee Trans. Micro. Thy. & Tech. (1996),44, n° 10, pp. 1716–1724.

    Article  Google Scholar 

  5. Kitayama (K.), Fading-free transport of 60 GHz optical dsb signal in non-dispersion shifted fiber using chirped fiber grating.Proc. Int. Top. Meet. Micro. Photon. (1998), Princeton, nj, USA, pp. 223–226.

  6. Ramos (F.), Marti (J.), Polo (V.), Fuster (J.M.), On the use of fiber induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimetre-wave optical systems,ieee Photon. Technol. Lett. (1998),10, pp. 1473–1475.

    Article  Google Scholar 

  7. Sotobayashi (H.), Kitayama (K.), Cancellation of the signal fading for 60 GHz subcarrier multiplexed optical dsb signal transmission in non-dispersion shifted fiber using midway optical phase conjugation,ieee J. Lightwave Technol. (1999),17, pp. 2488–2497.

    Article  Google Scholar 

  8. Bhattacharya (P.), Quantum well and quantum dot lasers: From strained-layer and self-organized epitaxy to high-performance devices,Opt. & Quant. Electron, (2000),32, n° 3, pp. 211–225.

    Article  Google Scholar 

  9. Nagarajan (R.), Levy (S.), Bowers (J.E.), Millimeter wave narrowband optical fiber links using external cavity semiconductor lasers,ieee J. Lightwave Technol, (1994),12, n° 1, pp. 127–136.

    Article  Google Scholar 

  10. Georges (J.B.), Kiang (M.), Heppell (K.), Saved (M.), Lau (K.Y.), Optical transmission of narrow-band millimeter-wave signals by resonant modulation of monolithic semiconductor lasers,ieee Photon. Technol. Lett. (1994),6, n° 4, pp. 568–570.

    Article  Google Scholar 

  11. Lim (C.),Novak (D.),Smith (G.H.), Implementation of an upstream path in a millimeter-wave fiber wireless system,Proc. Opt. Fiber Commun. Conf. (1998), San Jose, CA, USA, pp. 16–17.

  12. Lim (C.),Novak (D.),Nirmalathas (A.),Smith (G.H.), Dispersion-induced power penalties in millimeter-wave signal transmission using multi-section dbr semiconductor lasers. to appear inieee Trans. Micro. Thy. & Tech. (2001).

  13. Ohno (T.), Sato (K.), Fukushima (S.), Doi (Y.), Matsuoka (Y.), Application of DBR mode-locked lasers in millimeter-wave fiberradio system,ieee J. Lightwave Technol, (2000),18, pp. 44–49.

    Article  Google Scholar 

  14. Smith (G.H.), Novak (D.), Ahmed (Z.), Technique for optical ssb generation to overcome dispersion penalties in fibre-radio systems,Electron. Lett. (1997),33, pp. 74–75.

    Article  Google Scholar 

  15. Davies (B.), Conradi (J.), Hybrid modulator structures for subcarrier and harmonic subcarrier optical single side-band,ieee Photon. Technol. Lett. (1998),10, pp. 600–602.

    Article  Google Scholar 

  16. Vergnol (E.), Devaux (F.), Tanguy (D.), PÉnard (E.), Integrated lightwave millimetric single side-band source: design and issues,ieee J. Lightwave Technol. (1998),16, pp. 1276–1284.

    Article  Google Scholar 

  17. Park (J.), Sorin (W.V.), Lau (K.Y.), Elimination of fibre chromatic dispersion penalty in 1550 nm millimetre-wave optical transmission,Electron. Lett. (1997),33, pp. 512–513.

    Article  Google Scholar 

  18. Yao (X.S.), Brillouin selective side-band amplification of microwave photonic signals,ieee Photon. Technol. Lett. (1998),10, pp.138–140.

    Article  Google Scholar 

  19. Wake (D.), Lima (C.R.), Davies (P.A.), Optical generation of millimeter-wave signals for fiber-radio systems using a dualmode dfb semiconductor laser,ieee Trans. Micro. Thy. & Tech, (1995),43, n° 9, pp. 2270–2276.

    Article  Google Scholar 

  20. Novak (D.), Tucker (R.S.), Millimetre-wave signal generation using pulsed semiconductor lasers,Electron. Lett. (1994),30, n° 17, pp. 1430–1431.

    Article  Google Scholar 

  21. Ahmed (Z.), Novak (D.), Waterhouse (R.B.), Liu (H.F.), Optically-fed millimetre-wave (37 GHz) transmission system incorporating a hybrid mode-locked semiconductor laser,Electron. Lett. (1996),32, n° 19, pp. 1790–1792.

    Article  Google Scholar 

  22. Ahmed (Z.),Novak (D.),Waterhouse (R.B.),Liu (H.F.), Millimeter-wave (37 GHz) transmission of data (up to 500 Mb/s) in an optically fed wireless link incorporating a hybrid mode-locked monolithic dbr laser,Proc. Opt. Fiber Commun. Conf. (1997), Dallas, tx, USA, pp. 45–48.

  23. Ahmed (Z.), Novak (D.), Waterhouse (R.B.), Liu (H.F.), 37-GHz fiber-wireless system for distribution of broad-band signals,ieee Trans. Micro. Thy. & Tech, (1997),45, n° 8, pp. 1431–1435.

    Article  Google Scholar 

  24. vonHelmolt (C.H.), Krüger (U.), Krüger (K.), Grosskopf (G.), A mobile broad-band communication system based on mode-locked lasers,ieee Trans. Micro. Thy. & Tech. (1997),45, n° 8, pp. 1424–1430.

    Article  Google Scholar 

  25. Levy (S.), Nagarajan (R.), Helkey (R.J.), Humphrey (P.), Bowers (J.E.), Millimetre wave fiber-optic psk subcarrier transmission at 35 GHz over 6.3 km using a grating external cavity semiconductor laser,Electron. Lett., (1993),29, n° 8, pp. 690–691.

    Article  Google Scholar 

  26. Georges (J.B.), Cutrer (D.M.), Kiang (M.), Lau (K.Y.), Multichannel millimeter wave subcarrier transmission by resonant modulation of monolithic semiconductor lasers,ieee Photon. Technol. Lett., (1995),7, n° 4, pp. 431–433.

    Article  Google Scholar 

  27. Schmuck (H.), Heidemann (R.), Hofstetter (R.), Distribution of 60 GHz signals to more than 1000 base stations,Electron. Lett. (1994),30, n° 1, pp. 59–60.

    Article  Google Scholar 

  28. Griffin (R.A.),Lane (P.M.),O’Reilly (J.J.), Radio-over-fiber distribution using an optical millimeter-wave/DWDM overlay,Proc. Opt. Fiber Commun. Conf, (1999), San Diego, CA, USA, pp. 70–72.

  29. Park (J.), Shakouri (M.S.), Lau (K.Y.), Millimetre-wave electro-optic upconverter for wireless digital communications,Electron. Lett., (1995),31, n° 13, pp. 1085–1086.

    Article  Google Scholar 

  30. Cadiou (J.F.), Devaux (F.), Veillard (J.F.), LeMerdy (B.), Guena (J.), PÉnard (E.), Legaud (P.), Electroabsorption modulator for radio over fiber at 38 GHz,Electron. Lett., (1995),31, n° 15, pp. 1273–1274.

    Article  Google Scholar 

  31. Park (J.), Lau (K.Y.), Millimetre-wave (39 GHz) fibre-wireless transmission of broadband multichannel compressed digital video,Electron. Lett., (1995),32, n° 5, pp. 474–476.

    Article  Google Scholar 

  32. Kawamura (H.), Imai (N.), Ogawa (E.), H. Inomata (H.), Highspeed data transmission using millimeter-wave fiber-optic links.ieice Trans. Commun., (1996),E79-B, n° 12, pp. 1784–1791.

    Google Scholar 

  33. Smith (G.H.),Novak (D.),Lim (C.), A millimeter-wave fullduplex wdm/scm fiber-radio access network,Proc. Opt. Fiber Commun. Conf., (1998), San Jose, ca, USA, pp. 18–19.

  34. Kuri (K.), Kitayama (K.), Stöhr (A.), Ogawa (Y.), Fiber-optic millimeter-wave downlink system using 60 GHz-band external modulation,IEEE J. Lightwave Technol, (1999),17, n° 5, pp. 799–806.

    Article  Google Scholar 

  35. Vergnol (E.),Tanguy (D.),Cadiou (J.F.),Carenco (A.),Penard (E.), Multi-carrier and m-QAM modulation based on integrated single side band lightwave source,Proc. Opt. Fiber Commun. Conf., (1999), San Diego, ca, usa.

  36. Georges (J.B.), Park (J.), Solgaard (O.), Pepeljugoski (P.), Sayed (M.), Lau (K.Y.), Transmission of 300 Mbps bpsk at 39 GHz using feedforward optical modulation,Electron. Lett. (1994),30, n° 2, pp. 160–161, 1994.

    Article  Google Scholar 

  37. Braun (R.P.), Grosskopf (G.), Rodhe (D.), Schmidt (F), Lowphase-noise millimeter-wave generation at 64 GHz and data transmission using optical single sideband injection locking,ieee Photon. Technol. Lett., (1998),10, n° 5, pp. 728–730.

    Article  Google Scholar 

  38. Noel (L.), Marcenac (D.), Wake (D.), 120 Mbps qpsk radiofiber transmission over 100 km of standard fiber at 60 GHz using a master/slave injection locked dfb laser source.Electron. Lett. (1996),32, n° 20, pp. 1895–1897.

    Article  Google Scholar 

  39. Georges (J.B.),Park (J.),Solgaard (O.),Cutrer (D.),Pepeljugoski (P.),Lau (K.Y.), High-data-rate millimeter-wave subcarrier transmission using feedforward optical modulation,Proc. Opt. Fiber Commun. Conf. (1994), Washington, DC, USA, pp. 165–167.

  40. Smith (G.H.), Novak (d.), Lim (C.), Wu (K.), Full-duplex broadband millimetre-wave optical transport system for fiber wireless access,Electron. Lett., (1997),33, n° 13, pp. 1159–1160, 1997.

    Article  Google Scholar 

  41. NoËl (L.), Wake (D.), Moodie (D.G.), Marcenac (D.D.), Westbrook (L.D.), Nesset (D.), Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,ieee. Trans. Micro. Thy. & Tech. (1997),45, n° 8, pp. 1416–1423.

    Article  Google Scholar 

  42. Braun (R.P.),Grosskopf (G.),Hentges (R.),Loch (S.),Rohde (D.),Schmidt (F.), Fiberoptic microwave generation for bidirectional broadband mobile communications,Proc. ieee mtts Int. Micro. Symp. (1997), Denver, CO, USA, pp. 225–228.

  43. Kojucharow (K.),Kaluzni (H.),Sauer (M.),Nowak (W.), A wireless LAN at 60 GHz — novel system design and transmission experiments,Proc. ieee mtts Int. Micro. Symp., (1998), Baltimore, md, usa, pp. 1513–1516.

  44. Smith (G.H.),Novak (D.), Broadband millimeter-wave fiberradio network incorporating remote up/downconversion,Proc. ieee mtts Int. Micro. Symp. (1998), Baltimore, md, usa, pp. 1509–1512.

  45. Gopalakrishnan (G.K.), Burns (W.K.), Bulmer (C.H.), Microwave-optical mixing in LiNb03 modulators,ieee Trans. Micro. Thy. & Tech., (1993),41, pp. 2383–2391.

    Article  Google Scholar 

  46. Young (T.), Conradi (J.), Tinga (W.R.), ber characteristics of π/4 dqpsk microwave subcarrier signals on optical fiber using Mach-Zehnder modulator nonlinear upconversion,ieee Photon. Technol. Lett, (1996),8, pp. 1552–1554.

    Article  Google Scholar 

  47. Fuster (J.M.), Marti (J.), Polo (V.), Corral (J.L.), Fiber-optic microwave link employing optically amplified electrooptical upconverting receivers.ieee Photon. Technoi. Lett. (1997),9, pp. 1161–1163.

    Article  Google Scholar 

  48. Fuster (J.M.), Marti (J.), Corral (J.L.), Chromatic dispersion effects in electro-optical upconverted millimeter-wave fiber optic links,Electron. Lett. (1997),33, n° 23, pp. 1969–1970.

    Article  Google Scholar 

  49. Meslener (G.J.), Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,ieee J. Quantum Electron., (1984),20, n° 10, pp. 1208–1216.

    Article  Google Scholar 

  50. Rheinfelder (C.H.),Strohm (K.M.),Metzger (L.),Kibbel (H.),Luy (J.-F.),Heinrich (W.), 47 GHz SiGe-MMIC oscillator,Proc. ieee mtts Int. Micro. Symp., (1999), Anaheim, ca, usa, pp. 5–8.

  51. Sinnesbichler (F.X.),Geltinger (H.),Olbrich (G.R.), A 50 GHz hbt push-pull oscillator,Proc. ieee mtts Int. Micro. Symp. (1999), Anaheim, ca, usa, pp. 9–12.

  52. Lim (C.),Nirmalathas (A.),Novak (D.),Waterhouse (R.),Ghorbani (K.), Full-duplex broadband fiber-wireless system incorporating baseband data transmission and a novel dispersion tolerant modulation scheme,Proc. ieee mtts Int. Micro. Symp. (1999), Anaheim, CA, USA, pp. 1201–1204.

  53. Dagli (N.), Wide-bandwidth lasers and modulators for rf photonics,ieee Trans. Micro. Thy. & Tech. (1999),47, pp. 1151–1171.

    Article  Google Scholar 

  54. Loi (K.K.), Sakamoto (I.), Mei (X.B.), Tu (C.W.), Chang (W.S.C.), High efficiency 1.3 μ.m InAsP-GalnP mqw electroabsorption waveguide modulators for microwave fiber optic links,ieee Photon. Technoi. Lett., (1996),8, pp. 626–628.

    Article  Google Scholar 

  55. Ido (T.), Tanaka (S.), Suzuki (M.), Koizumi (M.), Sano (H.), Inoue (H.), Ultra high-speed multiple quantum well electroabsorption optical modulators with integrated waveguides,J. Lightwave Technol, (1996),14, pp. 2026–2034.

    Article  Google Scholar 

  56. Mineo (N.),Yamada (K.),Nakamura (K.),Sakai (S.),Ushikobo (T.), 60 GHz band electroabsorption modulator module,Proc. Opt. Fiber Commun. Conf., (1998), San Jose, ca, usa, pp. 287–288.

  57. Moss (D.J.), Ido (T.), Sano (H.), Photogenerated carrier sweep out times in strained InxGa1-x/In Al1-y quantum well modulators,Electron. Lett., (1994),30, pp. 405–406.

    Article  Google Scholar 

  58. Wooten (E.L.), Kissa (K.M.), Yi-Yan (A.), Murphy (E.J.), Lafaw (D.A.), Hallemeier (P.F.), Maack (D.), Attanasio (D.V.), Fritz (D.J.), McBrien (G.J.), Bossi (D.E.), A review of Lithium Niobate modulators for fiber-optic communications systems,ieee J. Sel. Top. Quantum Electron, (2000),6, pp. 69–82.

    Article  Google Scholar 

  59. Dolfi (D.W.), Ranganath (T.R.), 50 GHz velocity-matched broad wavelength LiNb03 modulator with multimode active section,Electron. Lett. (1992),28, pp. 1197–1199.

    Article  Google Scholar 

  60. Burns (W.), Howerton (M.), Moeller (R.), Krahembuhl (R.), McElhanon (R.), Greenblatt (S.), Low drive voltage, broadband LiNbO3 modulators with and without etched ridges.,J. Lightwave Technol. (1999),17, pp. 2551–2555.

    Article  Google Scholar 

  61. Noguchi (K.), Mitomi (O.), Miyazawa (H.), Millimeter-wave Ti:LiNbO3 optical modulators,J. Lightwave Technol. (1998),16, pp. 615–619.

    Article  Google Scholar 

  62. Walker (R.G.), Electro-optic modulation at mm-wave frequencies in GaAs/AlGaAs guided wave devices,Proc. ieee/leos Ann. Meet., (1995), San Francisco, ca, usa, pp. 118–119.

  63. Spickermann (R.), Sakamoto (S.R.), Peters (M.G.), Dagli (N.), GaAs/AlGaAs traveling wave electro-optic modulator with electrical bandwidth greater than 40 GHz.Electron, Lett. (1996),32, pp. 1095–1096.

    Article  Google Scholar 

  64. Chen (D.), Fetterman (H.), Chen (A.), Steier (W.H.), Dalton (L.R.), Wang (W.), Shi (Y), Demonstration of 110 GHz electrooptic polymer modulators,Appl. Phys. Lett., (1997),70, pp. 3335–3337.

    Article  Google Scholar 

  65. Chen (D.), Bhattacharta (D.), Udupa (A.), Tsap (B.), Fetterman (H.), Chen (A.), Lee (S.S.), Chen (J.), Steier (W.H.), Dalton (L.R.), High frequency polymer modulators with integrated finline transitions and low Vπ,IEEE Photon. Technol. Lett. (1999),11, pp. 54–56.

    Article  Google Scholar 

  66. Umbach (A.),Engel (TH.), G. Unterbörsch (G.), Optoelectronic integration of ultrafast photoreceivers,Proc. Int. Top. Meet. Micro. Photon., (1999), Melbourne, Australia, pp. 31–34.

  67. Wey (Y.G.), Giboney (K.), Bowers (J.E.), Rodwell (M.), Sievestre (P.), Thiagarajan (P.), Robinson (G.), 110-GHz GalnAs/InP double heterostructure p-i-n photodetectors,J. Lightwave Technol, (1995),13, n° 7, pp. 1490–1499.

    Article  Google Scholar 

  68. Kato (K.), Ultrawide-band/high-frequency photodetectors,ieee Trans. Micro. Thy. & Tech. (1999),47, n° 7, pp. 1265–1281.

    Article  Google Scholar 

  69. Kato (K.), Kozen (A.), Muramoto (Y.), Itaya (Y.), Nagatsuma (T.), Yaita (M.), 110-GHz, 50%-efficiency mushroommesa waveguide p-i-n photodiode for a 1.55-μm wavelength,ieee Photon. Technol. Lett. (1994),6, n° 6, pp. 719–721.

    Article  Google Scholar 

  70. Umbach (A.), Trommer (D.), Mekonnen (G.G.), Ebert (W.), Unterborsch (G.), Waveguide integrated 1.55-μm photodetector with 45 GHz bandwidth,Electron. Lett, (1996),32, n° 23, pp. 2143–2145.

    Article  Google Scholar 

  71. Giboney (K.S.), Nagarajan (R.L.), Reynolds (T.E.), Allen (S.T.), Mirin (R.P.), Rodwell (M.J.W.), Bowers (J.E.), Travelling-wave photodetectors with 172-GHz bandwidth and 76-GHz bandwidth-efficiency product,ieee Photon. Technol. Lett., (1995),7, n° 4, pp. 412–414.

    Article  Google Scholar 

  72. Lin (L.Y.), Wu (M.C.), Itoh (T.), Vang (T.A.), Muller (R.E.), Sivco (D.L.), Cho (A.Y.), High-power high-speed photodetectors — design, analysis, and experimental demonstration,ieee Trans. Micro. Thy. & Tech., (1997),45, n° 8, pp. 1320–1331.

    Article  Google Scholar 

  73. Williams (K.J.), Esman (R.D.), Wilson (R.B.), Kulick (J.D.), Differences in p-side and n-side illuminated p-i-n photodiode nonlinearities,ieee Photon. Technol. Lett, (1998),10, n° 1, pp. 132–134.

    Article  Google Scholar 

  74. Ishibashi (T.), Fushimi (H.), Ito (H.), Furuta (T.), High power uni-travelling-carrier photodiodes,Proc. Int. Top. Meet. Micro. Photon. (1999), Melbourne, Australia, pp. 75–78.

  75. Leven (A.),Baeyens (Y.),Benz (W.),Bronner (W.),Hülsmann (A.),Hurm (V.),Jakobus (T.),Köhler (K.),Ludwig (M.),Reuter (R.),Rosenzweig (J.),Schlechtweg (M.), GaAs-based Pin-hemt photoreceivers for optical microwave and millimeterwave transmission at 1.55 µm,Proc. Int. Top. Meet. Micro. Photon. (1998), Princeton, NJ, USA, post deadline paper PD002.

  76. Takahata (K.), Muramoto (y.), Fukano (H.), Matsuoka (Y.), 52 GHz bandwidth monolithically integrated wgpd/hemt photoreceiver with large o/e conversion factor of 105 V/W,Electron. Lett. (1999),35, pp. 1639–1640.

    Article  Google Scholar 

  77. Umbach (A.), Vanwaasen (S.) Auer (U.), Bach (H.G.), Bertenburg (R.M.), Breuer (V.), Ebert (W.), Janssen (G.), Mekonnen (G.G.), Passenberg (W.), Schlaak (W.), Schramm (C.), Seeger (A.), Tegude (F.J.), Unterbörsch (G.), Monolithic pin-hemt 1.55 μm photoreceiver on InP with 27 GHz bandwidth,Electron. Lett. (1997),32, pp. 2142–2143.

    Article  Google Scholar 

  78. Umbach (A.), Trommer (D.), Mekonnen (G.), Ebert (W.), Unterbörsch (G.), Waveguide integrated 1.55 μm photodetector with 45 GHz bandwidth,Electron. Lett., (1997),32, pp. 2143–2145.

    Article  Google Scholar 

  79. Engel (TH.), Strttmatter (A.), Passenberg (W.), Umbach (A.), Schlaak (W.), Dröge (E.), Seeger (A.), Steingruber (R.), Mekonnen (G.G.), Unterbörsch (G.), Bach (H.-G.), Bottcher (E.H.), Bimberg (D.), Narrow-band photoreceiver oeic on InP operating at 38 GHz,ieee Photon. Technol. Lett. (1998),10, pp. 1298–1300.

    Article  Google Scholar 

  80. Heidemann (R.),Veith (G.), Mm-wave photonic technologies for Gbit/s-wireless-local-loop,Proc. Optoelectron. Commun. Conf. (1998), Chiba Japan, pp. 310–311.

  81. Kuri (T.), Kitayama (K.), Takahashi (Y.), 60-GHz-band fullduplex radio-on-fiber system using two-RF-port electroabsorption transceiver,ieee Photon. Technol. Lett. (2000),12, pp. 419–421.

    Article  Google Scholar 

  82. Rowe (W.S.X),Waterhouse (R.B.),Nirmalathas (A.),Novak (D.), Integrated antenna base station design for hybrid fiber radio networks,Proc. Int. Top. Meet. Micro. Photon. (1999), Melbourne, Australia, pp. 47–50.

  83. Mathoorasing (D.),Xanguy (D.),Cadiou (J.F.),Legaud (P.),Penard (E.),Bouchoule (S.),Kazmeirski (C.), Multicarrier distribution of multiplex digital compressed TV channels using harmonic laser source at 38 GHz,Proc. Int. Top. Meet. Micro. Photon, (1998), Princeton, nj, usa, pp. 13–16.

  84. O’Reilly (J.J.), Lane (P.M.), Capstick (M.H.), Salgado (H.M.), Heidemann (R.), Hofstetter (R.), Schmuck (H.), race R2005: microwave optical duplex antenna link,ieee Proceedings-J. (1993),140, pp. 385–391.

    Google Scholar 

  85. Deborgies (F.),Mittrich (M.),Schmuck (H.),Jaffre (P.) Pescod (C.), Progress in the acts frans Project,Proc. Int. Top. Meet Micro. Photon. (1999), Melbourne, Australia, pp. 115–118.

  86. AC083 frans Homepages: http://www.infowin.org/ACTS/RUS/ projects/ac803. htm, http://www.infowin.org/ACTS/RUS/ trials/ac803.htm.

  87. Heidemann (R.), MM-wave photonics — the enabling technology for broadband wireless local loop systems,Proc. Int. Top. Meet Micro. Photon, (1996), Kyoto, Japan, pp.35–36.

  88. Haisch (H.), T Pfeiffer (T.), Photonic technologies for hybrid access systems,Proc. Int. Top. Workshop Contemp. Photon. Technol. (2000), Tokyo, Japan, pp. 17–20.

  89. Ogawa (H.),Tsuji (H.),Hirakawa (M.), Novel fiber fed wdm links for millimeter-wave wireless access systems, (1999),Proc. ieee mtts Int. Micro. Symp. Anaheim, ca, USA, pp. 1213–1216.

  90. Lim (C.),Nirmalathas (A.),Novak (D.),Waterhouse (R.),Yoffe (G.), A wdm architecture for milllimeter-wave fiber radio system incorporating baseband data transmission,Proc. Int. Top. Meet. Micro. Photon., (1999), Melbourne, Australia, pp. 127–130.

  91. Smith (G.H.), Novak (D.), Lim (C.), A millimetre-wave fullduplex fiber-radio star-tree architecture incorporating wdm and SCM,ieee Photon. Technol Lett. (1998),10, pp. 1650–1652.

    Article  Google Scholar 

  92. Kaluzni (H.),Kojucharow (K.),Nowak (W),Peupelmann (J.),Sauer (M.),Sommer (D.),Finger (A.),Ferling (D.), Simultaneous electro-optical upconversion, remote oscillator generation and air transmission of multiple optical wdm channels for a 60 GHz high capacity indoor system,Proc. ieee mtts Int. Micro. Symp., (1999), Anaheim, ca, usa, pp. 881–884.

  93. Stöhr (A.), Kuri (T.), Kitayama (K.), Heinzelmann (R.), Jager (D.), Full-duplex 60 GHz fiber optic transmission,Electron. Lett. (1999),35, pp. 1653–1655.

    Article  Google Scholar 

  94. Griffin (R.A.),Lane (P.M.),O’Reilly (J.J.), Crosstalk reduction in an optical MM-wave/DWDM overlay for radio-over-fibre distribution,Proc. Int. Top. Meet. Micro. Photon., (1999), Melbourne, Australia, pp. 131–134.

  95. Nirmalathas (A.),Lim (C.),Novak (D.),Waterhouse (R.), Optical interfaces without light sources for base-station designs in fiber-wireless systems incorporating wdm,Proc. Int. Top. Meet. Micro. Photon., (1999), Melbourne, Australia, pp. 119–122.

  96. NoÉl (L.), Westbrook (L.D.), Moodie (D.G.), Nesset (D.), 120 Mbit/s QPSK data and multi-channel TV transmission over 13 km fiber to a 60 GHz mobile radio link using an electroabsoprtion modulator as a transceiver,Electron. Lett. (1997),33, pp. 1285–1286.

    Article  Google Scholar 

  97. Kuri (T.),Kitayama (K.),Xakahashi (Y.), Simplified bs without light source and rf local oscillator in full-duplex millimeter-wave radio-on-fiber system based upon external modulation technique,Proc. Int. Top. Meet. Micro. Photon., (1999), Melbourne, Australia, pp. 123–126.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nirmalathas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nirmalathas, A., Lim, C., Novak, D. et al. Progress in millimeter-wave fiber-radio access networks. Ann. Télécommun. 56, 27–38 (2001). https://doi.org/10.1007/BF03002983

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03002983

Keywords

Mots clés

Navigation