Abstract
Optical fiber communications systems have experienced a tremendous development over the past decades, enabling a steady exponential increase of data rates over short and long distances. Over the last 10 years, it became clear that using current fibers and/or spectral transmission bands won’t support a significant further increase. After introducing single-mode fiber-based optical transmission systems and the technological evolution that enabled current transmission systems, this chapter gives an overview on two distinct ongoing research directions for a drastic increase of data rates: (1) to further push the data rates limits in current single-mode fibers and (2) to explore a new multiplexing dimension, the spatial dimension of optical fibers to drastically increase the per-fiber data rates. The former topic focuses on approaches to increase the spectral efficiency and hence the amount of data that can be transported in a given bandwidth as well as adding further spectral bands where single-mode fibers guide at low loss. This approach is particularly interesting when maximizing data rates in existent fiber infrastructure. The second part describes novel optical fibers such as few-mode and multi-core fibers and related space-division multiplexing technologies that have been demonstrated to offer a strong per-fiber capacity increase of 2 orders of magnitude.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
M. Guarnieri, The conquest of the Atlantic. IEEE Ind. Electron. Mag. 8(1), 53–55 (2014)
Google. A quick hop across the pond: Supercharging the dunant subsea cable with sdm technology. https://cloud.google.com/blog/products/infrastructure/a-quick-hop-across-the-pond-supercharging-the-dunant-subsea-cable-with-sdm-technology
P.J. Winzer, D.T. Neilson, From scaling disparities to integrated parallelism: A decathlon for a decade. J. Lightwave Technol. 35(5), 1099–1115 (2017)
T. Miya, Y. Terunuma, T. Hosaka, T. Miyashita, Ultimate low-loss single-mode fibre at 1.55 μm. Electron. Lett. 15(4), 106–108 (1979)
R.J. Mears, L. Reekie, I.M. Jauncey, D.N. Payne, Low-noise erbium-doped fibre amplifier operating at 1.54 μm. Electron. Lett. 23(19), 1026–1028 (1987)
K. Kikuchi, Fundamentals of coherent optical fiber communications. J. Lightwave Technol. 34(1), 157–179 (2015)
S.J. Savory, Digital coherent optical receivers: Algorithms and subsystems. IEEE J. Select. Topics Quantum Electron. 16(5), 1164–1179 (2010)
R.J. Essiambre, G. Kramer, P.J. Winzer, G.J. Foschini, B. Goebel, Capacity limits of optical fiber networks. J. Lightwave Technol. 28(4), 662–701 (2010)
X. Chen, G. Raybon, D. Che, J. Cho, K.W. Kim, Transmission of 200-gbaud pdm probabilistically shaped 64-qam signals modulated via a 100-ghz thin-film linbo 3 i/q modulator, in 2021 Optical Fiber Communications Conference and Exhibition (OFC), (OFC, 2021)
C.E. Shannon, Communication in the presence of noise. Proc. IRE 37, 10–21 (1949)
T. Fehenberger, A. Alvarado, G. Böcherer, N. Hanik, On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel. J. Lightwave Technol. 34(21), 5063–5073 (2016)
G. Böcherer, P. Schulte, F. Steiner, Probabilistic shaping and forward error correction for fiber-optic communication systems. J. Lightwave Technol. 37(2), 230–244 (2019)
L. Rapp, M. Eiselt, Optical amplifiers for wideband optical transmission systems, in Optical Fiber Communication Conference, (Optica Publishing Group, 2021), p. Th4C–1
B.J. Puttnam, R.S. Luis, G. Rademacher, Y. Awaji, H. Furukawa, 1 Pb/s transmission in a 125 μm diameter 4-core MCF, in CLEO: QELS Fundamental Science, (Optica Publishing Group, 2022), p. JTh6B–1
Y. Wang, N.K. Thipparapu, D.J. Richardson, J.K. Sahu, Ultra-broadband bismuth-doped fiber amplifier covering a 115-nm bandwidth in the o and e bands. J. Lightwave Technol. 39(3), 795–800 (2021)
V. Mikhailov, J. Luo, D. Inniss, M.F. Yan, Y. Sun, G.S. Puc, R.S. Windeler, P.S. Westbrook, Y. Dulashko, D.J. DiGiovanni, Amplified transmission beyond c-and l-bands: Bismuth doped fiber amplifier for o-band transmission. J. Lightwave Technol. 40(10), 3255–3262 (2022)
B.J. Puttnam, R.S. Luís, G. Rademacher, M. Mendez-Astudillio, Y. Awaji, H. Furukawa, S-, C-and L-band transmission over a 157 nm bandwidth using doped fiber and distributed Raman amplification. Opt. Express 30(6), 10011–10018 (2022)
D. Semrau, R.I. Killey, P. Bayvel, A closed-form approximation of the gaussian noise model in the presence of inter-channel stimulated raman scattering. J. Lightwave Technol. 37(9), 1924–1936 (2019)
B.J. Puttnam, G. Rademacher, R.S. Luís, Space-division multiplexing for optical fiber communications. Optica 8(9), 1186–1203 (2021)
W. Klaus, J. Sakaguchi, B.J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, M. Watanabe, Free-space coupling optics for multicore Fibers. IEEE Photon. Technol. Lett. 24(21), 1902–1905 (2012)
Y. Abe, K. Shikama, S. Yanagi, T. Takahashi, Low-loss physical-contact-type fan-out device for 12-core multicore fiber, in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), (IET, 2013), pp. 1–3
S. Gross, N. Riesen, J.-D. Love, M. Withford, Three-dimensional ultra-broadband integrated tapered mode multiplexers. Laser Photonics Rev. 8(5) (2014)
T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, E. Sasaoka, Characterization of crosstalk in ultra-low-crosstalk multi-core fiber. J. Lightwave Technol. 30(4), 583–589 (2012)
T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, E. Sasaoka, Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber. Opt. Express 19(17), 16576–16592 (2011)
G. Rademacher, R.S. Luís, B.J. Puttnam, Y. Awaji, N. Wada, Crosstalk dynamics in multi-core fibers. Opt. Express 25(10), 12020–12028 (2017)
P. Sillard, M. Bigot-Astruc, D. Molin, Few-mode Fibers for mode-division-multiplexed systems. J. Lightwave Technol. 32(16), 2824–2829 (2014)
D. Marcuse, Calculation of bandwidth from index profiles of optical fibers. 1: Theory. Appl. Opt. 18(12), 2073–2080 (1979)
R. Maruyama, N. Kuwaki, S. Matsuo, M. Ohashi, Two mode optical fibers with low and flattened differential modal delay suitable for wdm-mimo combined system. Opt. Express 22(12), 14311–14321 (2014)
R. Ryf, N.K. Fontaine, R.J. Essiambre, Spot-based mode couplers for mode-multiplexed transmission in few-mode Fiber. IEEE Photon. Technol. Lett. 24(21), 1973–1976 (2012)
N.K. Fontaine, R. Ryf, H. Chen, D.T. Neilson, K. Kim, J. Carpenter, Laguerre-Gaussian mode sorter. Nat. Commun. 10(1), 1–7 (2019)
G. Rademacher, B.J. Puttnam, R.S. Luís, J. Sakaguchi, W. Klaus, T.A. Eriksson, Y. Awaji, T. Hayashi, T. Nagashima, T Nakanishi, T. Taru, T. Takahata, T. Kobayashi, H. Furukawa, and N. Wada, 10.66 Peta-bit/s transmission over a 38-Core-three-mode Fiber, in Proceedings of Optical Fiber Communication Conference, p. Th3H.1, 2020
T. Fujisawa, K. Saitoh, Group delay spread analysis of strongly coupled 3-core fibers: An effect of bending and twisting. Opt. Express 24(9), 9583–9591 (2016)
R. Ryf, J.C. Alvarado-Zacarias, S. Wittek, N.K. Fontaine, R.-J. Essiambre, H. Chen, R. Amezcua-Correa, H. Sakuma, T. Hayashi, T. Hasegawa, Coupled-core transmission over 7-core fiber, in Optical Fiber Communication Conference, (Optical Society of America, 2019), p. Th4B–3
K.P. Ho, J.M. Kahn, Mode-dependent loss and gain: Statistics and effect on mode-division multiplexing. Opt. Express 19(17), 16612–16635 (2011)
G. Rademacher, K. Petermann, Nonlinear gaussian noise model for multimode fibers with space-division multiplexing. J. Lightwave Technol. 34(9), 2280–2287 (2016)
A.J. Paulraj, D.A. Gore, R.U. Nabar, H. Bolcskei, An overview of MIMO communications - a key to gigabit wireless. Proc. IEEE 92(2), 198–218 (2004)
K. Shibahara, T. Mizuno, Y. Miyamoto, Long-haul mode multiplexing transmission enhanced by interference cancellation techniques based on fast mimo affine projection. J. Lightwave Technol. 38(18), 4969–4977 (2020)
D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, M. Suzuki, 10.16 Peta-bit/s Dense SDM/WDM transmission over Low-DMD 6-Mode 19-Core Fibre across C+L Band, in Proceedings of European Conference on Optical Communication, p. Th.PDP.A.1, 2017
B.J. Puttnam, R.S. Luís, Klaus W., J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, J. Marciante, 2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb, in Proceedings of European Conference on Optical Communication, p. PDP 3.1, 2015
G. Rademacher, R.S. Luis, B.J. Puttnam, N.K. Fontaine, M. Mazur, H. Chen, R. Ryf, D.T. Neilson, D. Dahl, J. Carpenter, P. Sillard, F. Achten, M. Bigot, J. Sakaguchi, H. Furukawa, 1.53 Peta-bit/s C-band transmission in a 55-mode fiber (European Conference on Optical Communication, 2022), p. Th3C.3
G. Rademacher, R.S. Luis, B.J. Puttnam, T.A. Eriksson, E. Agrell, H. Furukawa, R. Maruyama, K. Aikawa, Y. Awaji, N. Wada, 159 Tbit/s C + L band transmission over 1045 km 3-mode graded-index few-mode fiber, in Optical Fiber Communication Conference, (Optical Society of America, San Diego, 2018), p. Th4C–4
K. Shibahara, T. Mizuno, H. Kawakami, T. Kobayashi, M. Nakamura, K. Shikama, K. Nakajima, Y. Miyamoto, Full C-band 3060-km DMD-unmanaged 3-mode transmission with 40.2-Tb/s capacity using cyclic mode permutation, in Optical Fiber Communication Conference, (Optical Society of America, 2019), p. W3F–2
G. Rademacher, R.S. Luís, B.J. Puttnam, R. Ryf, S. van der Heide, T.A. Eriksson, N.K. Fontaine, H. Chen, R.J. Essiambre, Y. Awaji, H. Furukawa, N. Wada, 172 Tb/s C+L band transmission over 2040 km strongly coupled 3-Core Fiber, in Optical Fiber Communication Conference Postdeadline Papers 2020, (Optical Society of America, 2020), p. Th4C.5
D. Soma, S. Beppu, Y. Wakayama, S. Sumita, H. Takahashi, N. Yoshikane, I. Morita, T. Tsuritani, M. Suzuki, 50.47-tbit/s standard cladding coupled 4-core fiber transmission over 9,150 km. J. Lightwave Technol. 39(22), 7099–7105 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2024 Springer Nature Singapore Pte Ltd.
About this entry
Cite this entry
Rademacher, G. (2024). The Future of Optical Communications. In: Kawanishi, T. (eds) Handbook of Radio and Optical Networks Convergence. Springer, Singapore. https://doi.org/10.1007/978-981-97-2282-2_22
Download citation
DOI: https://doi.org/10.1007/978-981-97-2282-2_22
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-2281-5
Online ISBN: 978-981-97-2282-2
eBook Packages: EnergyReference Module Computer Science and Engineering