Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Future of Optical Communications

  • Reference work entry
  • First Online:
Handbook of Radio and Optical Networks Convergence
  • 136 Accesses

Abstract

Optical fiber communications systems have experienced a tremendous development over the past decades, enabling a steady exponential increase of data rates over short and long distances. Over the last 10 years, it became clear that using current fibers and/or spectral transmission bands won’t support a significant further increase. After introducing single-mode fiber-based optical transmission systems and the technological evolution that enabled current transmission systems, this chapter gives an overview on two distinct ongoing research directions for a drastic increase of data rates: (1) to further push the data rates limits in current single-mode fibers and (2) to explore a new multiplexing dimension, the spatial dimension of optical fibers to drastically increase the per-fiber data rates. The former topic focuses on approaches to increase the spectral efficiency and hence the amount of data that can be transported in a given bandwidth as well as adding further spectral bands where single-mode fibers guide at low loss. This approach is particularly interesting when maximizing data rates in existent fiber infrastructure. The second part describes novel optical fibers such as few-mode and multi-core fibers and related space-division multiplexing technologies that have been demonstrated to offer a strong per-fiber capacity increase of 2 orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Guarnieri, The conquest of the Atlantic. IEEE Ind. Electron. Mag. 8(1), 53–55 (2014)

    Article  Google Scholar 

  2. Google. A quick hop across the pond: Supercharging the dunant subsea cable with sdm technology. https://cloud.google.com/blog/products/infrastructure/a-quick-hop-across-the-pond-supercharging-the-dunant-subsea-cable-with-sdm-technology

  3. P.J. Winzer, D.T. Neilson, From scaling disparities to integrated parallelism: A decathlon for a decade. J. Lightwave Technol. 35(5), 1099–1115 (2017)

    Article  Google Scholar 

  4. T. Miya, Y. Terunuma, T. Hosaka, T. Miyashita, Ultimate low-loss single-mode fibre at 1.55 μm. Electron. Lett. 15(4), 106–108 (1979)

    Article  Google Scholar 

  5. R.J. Mears, L. Reekie, I.M. Jauncey, D.N. Payne, Low-noise erbium-doped fibre amplifier operating at 1.54 μm. Electron. Lett. 23(19), 1026–1028 (1987)

    Article  Google Scholar 

  6. K. Kikuchi, Fundamentals of coherent optical fiber communications. J. Lightwave Technol. 34(1), 157–179 (2015)

    Article  Google Scholar 

  7. S.J. Savory, Digital coherent optical receivers: Algorithms and subsystems. IEEE J. Select. Topics Quantum Electron. 16(5), 1164–1179 (2010)

    Article  Google Scholar 

  8. R.J. Essiambre, G. Kramer, P.J. Winzer, G.J. Foschini, B. Goebel, Capacity limits of optical fiber networks. J. Lightwave Technol. 28(4), 662–701 (2010)

    Article  Google Scholar 

  9. X. Chen, G. Raybon, D. Che, J. Cho, K.W. Kim, Transmission of 200-gbaud pdm probabilistically shaped 64-qam signals modulated via a 100-ghz thin-film linbo 3 i/q modulator, in 2021 Optical Fiber Communications Conference and Exhibition (OFC), (OFC, 2021)

    Google Scholar 

  10. C.E. Shannon, Communication in the presence of noise. Proc. IRE 37, 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  11. T. Fehenberger, A. Alvarado, G. Böcherer, N. Hanik, On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel. J. Lightwave Technol. 34(21), 5063–5073 (2016)

    Article  Google Scholar 

  12. G. Böcherer, P. Schulte, F. Steiner, Probabilistic shaping and forward error correction for fiber-optic communication systems. J. Lightwave Technol. 37(2), 230–244 (2019)

    Article  Google Scholar 

  13. L. Rapp, M. Eiselt, Optical amplifiers for wideband optical transmission systems, in Optical Fiber Communication Conference, (Optica Publishing Group, 2021), p. Th4C–1

    Google Scholar 

  14. B.J. Puttnam, R.S. Luis, G. Rademacher, Y. Awaji, H. Furukawa, 1 Pb/s transmission in a 125 μm diameter 4-core MCF, in CLEO: QELS Fundamental Science, (Optica Publishing Group, 2022), p. JTh6B–1

    Google Scholar 

  15. Y. Wang, N.K. Thipparapu, D.J. Richardson, J.K. Sahu, Ultra-broadband bismuth-doped fiber amplifier covering a 115-nm bandwidth in the o and e bands. J. Lightwave Technol. 39(3), 795–800 (2021)

    Article  Google Scholar 

  16. V. Mikhailov, J. Luo, D. Inniss, M.F. Yan, Y. Sun, G.S. Puc, R.S. Windeler, P.S. Westbrook, Y. Dulashko, D.J. DiGiovanni, Amplified transmission beyond c-and l-bands: Bismuth doped fiber amplifier for o-band transmission. J. Lightwave Technol. 40(10), 3255–3262 (2022)

    Article  Google Scholar 

  17. B.J. Puttnam, R.S. Luís, G. Rademacher, M. Mendez-Astudillio, Y. Awaji, H. Furukawa, S-, C-and L-band transmission over a 157 nm bandwidth using doped fiber and distributed Raman amplification. Opt. Express 30(6), 10011–10018 (2022)

    Article  Google Scholar 

  18. D. Semrau, R.I. Killey, P. Bayvel, A closed-form approximation of the gaussian noise model in the presence of inter-channel stimulated raman scattering. J. Lightwave Technol. 37(9), 1924–1936 (2019)

    Article  Google Scholar 

  19. B.J. Puttnam, G. Rademacher, R.S. Luís, Space-division multiplexing for optical fiber communications. Optica 8(9), 1186–1203 (2021)

    Article  Google Scholar 

  20. W. Klaus, J. Sakaguchi, B.J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, M. Watanabe, Free-space coupling optics for multicore Fibers. IEEE Photon. Technol. Lett. 24(21), 1902–1905 (2012)

    Article  Google Scholar 

  21. Y. Abe, K. Shikama, S. Yanagi, T. Takahashi, Low-loss physical-contact-type fan-out device for 12-core multicore fiber, in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), (IET, 2013), pp. 1–3

    Google Scholar 

  22. S. Gross, N. Riesen, J.-D. Love, M. Withford, Three-dimensional ultra-broadband integrated tapered mode multiplexers. Laser Photonics Rev. 8(5) (2014)

    Google Scholar 

  23. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, E. Sasaoka, Characterization of crosstalk in ultra-low-crosstalk multi-core fiber. J. Lightwave Technol. 30(4), 583–589 (2012)

    Article  Google Scholar 

  24. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, E. Sasaoka, Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber. Opt. Express 19(17), 16576–16592 (2011)

    Article  Google Scholar 

  25. G. Rademacher, R.S. Luís, B.J. Puttnam, Y. Awaji, N. Wada, Crosstalk dynamics in multi-core fibers. Opt. Express 25(10), 12020–12028 (2017)

    Article  Google Scholar 

  26. P. Sillard, M. Bigot-Astruc, D. Molin, Few-mode Fibers for mode-division-multiplexed systems. J. Lightwave Technol. 32(16), 2824–2829 (2014)

    Article  Google Scholar 

  27. D. Marcuse, Calculation of bandwidth from index profiles of optical fibers. 1: Theory. Appl. Opt. 18(12), 2073–2080 (1979)

    Article  Google Scholar 

  28. R. Maruyama, N. Kuwaki, S. Matsuo, M. Ohashi, Two mode optical fibers with low and flattened differential modal delay suitable for wdm-mimo combined system. Opt. Express 22(12), 14311–14321 (2014)

    Article  Google Scholar 

  29. R. Ryf, N.K. Fontaine, R.J. Essiambre, Spot-based mode couplers for mode-multiplexed transmission in few-mode Fiber. IEEE Photon. Technol. Lett. 24(21), 1973–1976 (2012)

    Article  Google Scholar 

  30. N.K. Fontaine, R. Ryf, H. Chen, D.T. Neilson, K. Kim, J. Carpenter, Laguerre-Gaussian mode sorter. Nat. Commun. 10(1), 1–7 (2019)

    Article  Google Scholar 

  31. G. Rademacher, B.J. Puttnam, R.S. Luís, J. Sakaguchi, W. Klaus, T.A. Eriksson, Y. Awaji, T. Hayashi, T. Nagashima, T Nakanishi, T. Taru, T. Takahata, T. Kobayashi, H. Furukawa, and N. Wada, 10.66 Peta-bit/s transmission over a 38-Core-three-mode Fiber, in Proceedings of Optical Fiber Communication Conference, p. Th3H.1, 2020

    Google Scholar 

  32. T. Fujisawa, K. Saitoh, Group delay spread analysis of strongly coupled 3-core fibers: An effect of bending and twisting. Opt. Express 24(9), 9583–9591 (2016)

    Article  Google Scholar 

  33. R. Ryf, J.C. Alvarado-Zacarias, S. Wittek, N.K. Fontaine, R.-J. Essiambre, H. Chen, R. Amezcua-Correa, H. Sakuma, T. Hayashi, T. Hasegawa, Coupled-core transmission over 7-core fiber, in Optical Fiber Communication Conference, (Optical Society of America, 2019), p. Th4B–3

    Google Scholar 

  34. K.P. Ho, J.M. Kahn, Mode-dependent loss and gain: Statistics and effect on mode-division multiplexing. Opt. Express 19(17), 16612–16635 (2011)

    Article  Google Scholar 

  35. G. Rademacher, K. Petermann, Nonlinear gaussian noise model for multimode fibers with space-division multiplexing. J. Lightwave Technol. 34(9), 2280–2287 (2016)

    Article  Google Scholar 

  36. A.J. Paulraj, D.A. Gore, R.U. Nabar, H. Bolcskei, An overview of MIMO communications - a key to gigabit wireless. Proc. IEEE 92(2), 198–218 (2004)

    Article  Google Scholar 

  37. K. Shibahara, T. Mizuno, Y. Miyamoto, Long-haul mode multiplexing transmission enhanced by interference cancellation techniques based on fast mimo affine projection. J. Lightwave Technol. 38(18), 4969–4977 (2020)

    Article  Google Scholar 

  38. D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, M. Suzuki, 10.16 Peta-bit/s Dense SDM/WDM transmission over Low-DMD 6-Mode 19-Core Fibre across C+L Band, in Proceedings of European Conference on Optical Communication, p. Th.PDP.A.1, 2017

    Google Scholar 

  39. B.J. Puttnam, R.S. Luís, Klaus W., J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, J. Marciante, 2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb, in Proceedings of European Conference on Optical Communication, p. PDP 3.1, 2015

    Google Scholar 

  40. G. Rademacher, R.S. Luis, B.J. Puttnam, N.K. Fontaine, M. Mazur, H. Chen, R. Ryf, D.T. Neilson, D. Dahl, J. Carpenter, P. Sillard, F. Achten, M. Bigot, J. Sakaguchi, H. Furukawa, 1.53 Peta-bit/s C-band transmission in a 55-mode fiber (European Conference on Optical Communication, 2022), p. Th3C.3

    Google Scholar 

  41. G. Rademacher, R.S. Luis, B.J. Puttnam, T.A. Eriksson, E. Agrell, H. Furukawa, R. Maruyama, K. Aikawa, Y. Awaji, N. Wada, 159 Tbit/s C + L band transmission over 1045 km 3-mode graded-index few-mode fiber, in Optical Fiber Communication Conference, (Optical Society of America, San Diego, 2018), p. Th4C–4

    Google Scholar 

  42. K. Shibahara, T. Mizuno, H. Kawakami, T. Kobayashi, M. Nakamura, K. Shikama, K. Nakajima, Y. Miyamoto, Full C-band 3060-km DMD-unmanaged 3-mode transmission with 40.2-Tb/s capacity using cyclic mode permutation, in Optical Fiber Communication Conference, (Optical Society of America, 2019), p. W3F–2

    Google Scholar 

  43. G. Rademacher, R.S. Luís, B.J. Puttnam, R. Ryf, S. van der Heide, T.A. Eriksson, N.K. Fontaine, H. Chen, R.J. Essiambre, Y. Awaji, H. Furukawa, N. Wada, 172 Tb/s C+L band transmission over 2040 km strongly coupled 3-Core Fiber, in Optical Fiber Communication Conference Postdeadline Papers 2020, (Optical Society of America, 2020), p. Th4C.5

    Chapter  Google Scholar 

  44. D. Soma, S. Beppu, Y. Wakayama, S. Sumita, H. Takahashi, N. Yoshikane, I. Morita, T. Tsuritani, M. Suzuki, 50.47-tbit/s standard cladding coupled 4-core fiber transmission over 9,150 km. J. Lightwave Technol. 39(22), 7099–7105 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Rademacher .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rademacher, G. (2024). The Future of Optical Communications. In: Kawanishi, T. (eds) Handbook of Radio and Optical Networks Convergence. Springer, Singapore. https://doi.org/10.1007/978-981-97-2282-2_22

Download citation

Publish with us

Policies and ethics