Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Determination of the cone radius for positive concave operators

Bestimmung des Kegelradius bei positiven konkaven Operatoren

  • Contributed Papers
  • Published:
Computing Aims and scope Submit manuscript

Abstract

The computation of bestR-orders of sequences produced by iterative methods leads to the determination of the cone radius of certain concave operators. The main result of the paper is the representation of the cone radius as the infimum of spectral radii of all linear operators majorizing the concave operator. This characterization is of numerical interest.

Zusammenfassung

Die Berechnung der bestenR-Ordnung von Folgen aus iterativen Näherungsverfahren führt auf die Ermittlung des hier eingeführten Kegelradius bestimmter konkaver Operatoren. Das Hauptergebnis der Arbeit ist die Darstellung des Kegelradius als Infimum der Spektralradien aller den konkaven Operator majorisierenden linearen Operatoren. Diese Charakterisierung ist von numerischem Intersse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bachman, G., Narici, L.: Functional analysis. New York-London: Academic Press 1966.

    Google Scholar 

  2. Barker, G. P., Schneider, H.: Algebraic Perron-Frobenius theory. Linear Algebra Appl.11, 219–233 (1975).

    Google Scholar 

  3. Bohl, E.: Monotonie: Lösbarkeit und Numerik bei Operatorgleichungen. Berlin-Heidelberg-New York: Spring 1974.

    Google Scholar 

  4. Burmeister, W.: Linear supporting operators for order-convex mappings. (In preparation.)

  5. Burmeister, W., Schmidt, J. W.: On theR-order of coupled sequences II. Computing29, 73–81 (1982).

    Google Scholar 

  6. Burmeister, W., Schmidt, J. W.: On theR-order of coupled sequences III. Computing30, 157–169 (1983).

    Google Scholar 

  7. Burmeister, W., Schmidt, J. W.: Über Kegel in endlichdimensionalen Räumen. Beiträge Numer. Math.12, 29–32 (1984).

    Google Scholar 

  8. Fan, K.: Topological proof for certain theorems on matrices with nonnegative elements. Monatsh. Math.62, 219–237 (1958).

    Google Scholar 

  9. Krasnoselskij, M. A.: Positive solutions of operator equations. Groningen: Noordhoff 1964.

    Google Scholar 

  10. Krein, M. G., Rutman, M. A.: Linear operators leaving invariant a cone in a Banach space. Uspehi mat. Nauk SSSR3, 3–95 (1948) and Amer. Math. Soc. Transl.26 (1950).

    Google Scholar 

  11. Marek, I.: Frobenius theory of positive operators: comparison theorems and applications. SIAM J. Appl. Math.19, 607–628 (1970).

    Google Scholar 

  12. Massabo, I., Stuart, C. A.: Positive eigenvectors ofk-set contractions. Nonlinear Anal.3, 35–44 (1979).

    Google Scholar 

  13. Mewborn, A. C.: Generalizations of some theorems on positive matrices to completely continuous linear transformations on a normed linear space. Duke Math. J.27, 273–281 (1960).

    Google Scholar 

  14. Milovanović, G. V., Petković, M. S.: On the convergence order of a modified method for simultaneous finding polynomial zeros. Computing30, 171–178 (1983).

    Google Scholar 

  15. Nussbaum, R. D.: Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem. In: Fixed point theory (Fadell, E., Fournier, G., eds.), (Lecture Notes in Mathematics, Vol. 886), pp. 309–330. Berlin-Heidelberg-New York: Springer 1981.

    Google Scholar 

  16. Rheinboldt, W. C., Vandergraft, J. S.: A simple approach to the Perron-Frobenius theory for positive operators on general partially-ordered finite-dimensional linear spaces. Math. Comp.27, 139–145 (1973).

    Google Scholar 

  17. Schmidt, J. W.: On theR-order of coupled sequences I. Computing26, 333–342 (1981).

    Google Scholar 

  18. Schmidt, J. W., Leder, D.: Ableitungsfreie Verfahren ohne Auflösung linearer Gleichungen. Computing5, 71–81 (1970).

    Google Scholar 

  19. Schneider, H., Turner, R. E. L.: Positive eigenvectors of order-preserving maps. J. Math. Anal. Appl.37, 506–515 (1972).

    Google Scholar 

  20. Varga, R. S.: Matrix iterative analysis. Englewood Cliffs, N.J.: Prentice-Hall 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burmeister, W., Schmidt, J.W. Determination of the cone radius for positive concave operators. Computing 33, 37–49 (1984). https://doi.org/10.1007/BF02243074

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02243074

AMS Subject Classifications

Key words

Navigation