Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Inequalities for convex sequences and nondecreasing convex functions

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

In this paper, by using Wu–Debnath’s method, we establish inequalities of Hammer–Bullen type for convex sequences and nondecreasing convex functions. In particular, we give an extension of a recent Farissi’s inequality. By assuming the symmetry of an involved sequence, we derive an inequality of Fejér–Hammer–Bullen type for convex sequences. In addition, we establish some companions of an Hermite–Hadamard like inequality by Latreuch and Belaïdi. In our approach we use matrix methods based on column stochastic matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovich, S., Barić, J., Pečarić, J.: Fejer and Hermite-Hadamard type inequalities for superquadratic functions. J. Math. Anal. Appl. 344, 1048–1056 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borcea, J.: Equilibrium points of logarithmic potentials. Trans. Am. Math. Soc. 359, 3209–3237 (2007)

    Article  MATH  Google Scholar 

  3. Breckner, W.W., Trif, T.: Convex Functions and Related Functional Equations: Selected Topics. Cluj University Press, Cluj (2008)

    MATH  Google Scholar 

  4. Bullen, P.S.: Error estimates for some elementary quadrature rules. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 602–633, 97–103 (1978)

    MathSciNet  MATH  Google Scholar 

  5. Burtea, A.-M.: Two examples of weighted majorization. An. Univ. Craiova Ser. Mat. Inform. 32(2), 92–99 (2010)

    MathSciNet  MATH  Google Scholar 

  6. El Farissi, A.: Simple proof and refinement of Hermite–Hadamard inequality. J. Math. Inequal. 4(3), 365–369 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hammer, P.C.: The midpoint method of numerical integration. Math. Mag. 31, 193–195 (1957/1958)

  8. Klaričić-Bakula, M., Pečarić, J., Perić, J.: Extensions of the Hermite–Hadamard inequality with applications. Math. Inequal. Appl. 12(4), 899–921 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Latreuch, Z., Belaïdi, B.: New inequalities for convex sequences with applications. Int. J. Open Problems Comput. Math. 5(3), 15–27 (2012)

    Article  Google Scholar 

  10. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications, 2nd edn. Springer, New York (2011)

    Book  MATH  Google Scholar 

  11. Minculete, N., Mitroi, F.-C.: Fejér-type inequalities. Austral. J. Math. Anal. Appl. 9(1), 1–8 (2012)

    MATH  Google Scholar 

  12. Niezgoda, M.: An extension of results of A. McD. Mercer and I. Gavrea. J. Inequal. Pure Appl. Math. 6(4), Art. 107 (2005)

  13. Niezgoda, M.: Sherman, Hermite-Hadamard and Fejér like inequalities for convex sequences and nondecreasing convex functions. Filomat (2016). (to appear)

  14. Pereira, R., Plosker, S.: Dirichlet polynomials, majorization, and trumping. J. Phys. A 46, 80–86 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Sherman, S.: On a theorem of Hardy, Littlewood, Pólya, and Blackwell. Proc. Natl. Acad. Sci. USA 37(1), 826–831 (1957)

    MATH  Google Scholar 

  16. Wu, S., Debnath, L.: Inequalities for convex sequences and their applications. Comput. Math. Appl. 54, 525–534 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Niezgoda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niezgoda, M. Inequalities for convex sequences and nondecreasing convex functions. Aequat. Math. 91, 1–20 (2017). https://doi.org/10.1007/s00010-016-0444-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-016-0444-9

Keywords

Mathematics Subject Classification

Navigation