Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

NP-Complete operations research problems and approximation algorithms

  • Published:
Zeitschrift für Operations-Research Aims and scope Submit manuscript

Abstract

For a large number of discrete optimization problems like the traveling salesman problem, the quadratic assignment problem, the general flow-shop problem, the knapsack problem etc. all known algorithms have the discouraging property that their (worst-case) running times on a computer grow exponentially with the size of the problem. All efforts to find polynomial bounded algorithms for these problems have failed. Recent results in complexity theory show that these problems belong to the classes ofNP-complete orNP-hard problems. It is a common belief that for problems belonging to these classes no polynomial bounded algorithms exist. Heuristics or approximation algorithms should be applied to these problems.

The aim of this tutorial paper is to give a survey onNP-complete andNP-hard problems and on approximation algorithms. All concepts introduced are illustrated by examples which are closely related to the knapsack problem and can be understood easily. References to most other problems of interest to operations researchers are given.

Zusammenfassung

Für eine große Anzahl von diskreten Optimierungsproblemen wie das Traveling Salesman Problem, das quadratische Zuordnungsproblem, das allgemeine Flowshop Problem, das Rucksackproblem usw. haben alle bisherigen Lösungsansätze die unangenehme Eigenschaft, daß der Rechenumfang der entsprechenden Algorithmen exponentiell mit dem Umfang der Probleme wächst. Alle Bemühungen polynomial beschränkte Verfahren für solche Probleme zu finden waren bislang ergebnislos. Neuere Ergebnisse der Komplexitätstheorie besagen, daß diese Probleme zu den Klassen derNP-vollständigen bzw.NP-schwierigen Probleme gehören und somit nach allgemein verbreiteter Auffassung wohl niemals polynomial lösbar sein werden. Die Anwendung von heuristischen Verfahren oder approximativen Algorithmen scheint der einzige Ausweg in dieser Situation.

Ziel der Arbeit ist es, einen einführenden Uberblick über die Theorie derNP-vollständigen undNP-schwierigen Probleme sowie über approximative Verfahren zu geben. Alle in der Arbeit einge-führten Begriffe werden an einfach verständlichen Beispielen erläutert, die eng mit dem Rucksack-problem verwandt sind.

Für weitere Probleme, die den Unternehmensforscher interessieren, findet der Leser ausführliche Literaturübersichten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aho, A., J. Hopcroft, andJ. Ullman: The Design and Analysis for Computer Algorithms. Reading, Mass. 1974.

  • Brucker, P.: NP-vollständige Operations Research Probleme. Graphen, Algorithmen, Datenstrukturen. Ed. by H. Noltemeier. München 1976.

  • -: On the Complexity of Clustering Problems. Optimization and Operations Research. Ed. by R. Henn, B. Korte, and W. Oettli. Berlin 1978.

  • Brucker, P., M. Garey, andD. Johnson: Scheduling Equal Length Tasks under Tree Like Precedence Constraints to Minimize Maximum Lateness. Math. of Operations Research2, 1977, 275–284. 275–284.

    Article  MathSciNet  MATH  Google Scholar 

  • Bruno, J., E.G. Coffman Jr., andR. Sethi: Scheduling Independent Tasks to Recue Mean Finishing-Time. Comm. ACM17, 1974, 504–510.

    Article  MathSciNet  MATH  Google Scholar 

  • Christofides, N.: Worst Case Analysis of a New Heuristic for the Traveling Salesman Problem. Management Sci. Res. Report No. 388, Carnegie Mellon University 1976.

  • Coffman, E.G., Jr.: Computer and Job-Shop Scheduling Theory. New York 1976.

  • Coffman, E., M. Garey, andD. Johnson: An Application of Bin-Packing to Multiprocessor Scheduling. Siam J. Computing7, 1978, 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  • Cook, S.A.: The Complexity of Theorem-Proving Procedures. Proceedings of the Third Annual ACM Symposium on Theory of Computing, 1971, 151–158.

  • Cornuejols, G., M. Fisher, andG. Nemhauser: Location of Bank accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms. Management Science23, 1977, 789–810.

    Article  MathSciNet  MATH  Google Scholar 

  • Dahl, O.J., E.W. Dijkstra, andC.A.R. Hoare: Structured Programming. New York 1972.

  • Even, S., A. Itai, andA. Shamir: On the Complexity of a Timetable and Multicommodity Flow Problems. SIAM J. Comput.5, 1976, 691–703.

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher, M., G. Nemhauser, andL. Wolsey: An Analysis of Approximations for Finding a Maximum Weight Hamilton Circuit. To appear in Operations Research.

  • Garey, M., andR. Graham: Bounds for Multiprocessor Scheduling with Resource Constraints. SIAM J. Comput.4, 1975, 187–200.

    Article  MathSciNet  MATH  Google Scholar 

  • Garey, M., R. Graham, andD. Johnson: SomeNP-complete Geometric Problems. Proceedings of 8th Annual ACM Symposium on Theory of Computing, 1976, 10–22.

  • —: Performance Guarantees for Scheduling Algorithms. Operations Research26, 1978, 3–21.

    Article  MathSciNet  MATH  Google Scholar 

  • Garey, M., andD. Johnson: Complexity Results for Multiprocessor Scheduling under Resource Contraints. SIAM J. Comput.4, 1975, 397–411.

    Article  MathSciNet  MATH  Google Scholar 

  • —: Scheduling Tasks with Nonuniform Deadlines on two Processors. J. ACM23, 1976, 461–467.

    Article  MathSciNet  MATH  Google Scholar 

  • —: StrongNP-Completeness Results: Motiviation, Examples and Implications. J. ACM25, 1978, 499–508.

    Article  MathSciNet  MATH  Google Scholar 

  • Garey, M., D. Johnson, andR. Sethi: The Complexity of Flowshop and Jobshop scheduling. Math. Operations Research1, 1976, 117–129.

    Article  MathSciNet  MATH  Google Scholar 

  • Garey, M., D. Johnson, andL. Stockmeyer: Some SimplifiedNP-Complete Problems. J. Theory Comput. Sci.1, 1976, 237–267.

    Article  MathSciNet  MATH  Google Scholar 

  • Garey, M., D. Johnson, andR. Tarjan: The Planar Hamilton Circuit Problem isNP-Complete. SIAM J. Comput.5, 1976, 704–714.

    Article  MathSciNet  MATH  Google Scholar 

  • Gonzales, T., O. Ibarra, andS. Sahni: Bounds for LPT Schedules on Uniform Processors. SIAM J. Comput.6, 1977, 155–166.

    Article  MathSciNet  MATH  Google Scholar 

  • Gonzales, T., andS. Sahni: Open Shop Scheduling to Minimize Finish Time. J. ACM23, 1976, 665–679.

    Article  MathSciNet  MATH  Google Scholar 

  • —: Flowshop and Jobshop Schedules: Complexity and Approximation. Operations Research26, 1978, 36–52.

    Article  MathSciNet  MATH  Google Scholar 

  • Graham, R.: Bounds for Certain Multiprocessing Anomalies. Bell System Techn. J.45, 1966, 1563–1581.

    Article  MATH  Google Scholar 

  • —: Bounds for Multiprocessing Timing Anomalies. SIAM J. Appl. Math.17, 1969, 416–429.

    Article  MathSciNet  MATH  Google Scholar 

  • -: Bounds on the Performance of Scheduling Algorithms. Computer and Job-Shop Scheduling Theory. Ed. by E. Coffman Jr. New York 1976.

  • Horowitz, E., andS. Sahni: Exact and Approximate Algorithms for Scheduling Nonidentical Processors. J. ACM23, 1976, 317–327.

    Article  MathSciNet  MATH  Google Scholar 

  • —: Fundamentals of Computer Algorithms. Computer Science Press, Pontomac, Md. 1978.

    MATH  Google Scholar 

  • Horvath, E., S. Lam, andR. Sethi: A Level Algorithm for Preemptive Scheduling. J. ACM24, 1977, 32–43.

    Article  MathSciNet  MATH  Google Scholar 

  • Itai, A.: Two Commodity Flow. J. ACM25, 1978, 596–611.

    Article  MathSciNet  MATH  Google Scholar 

  • Itai, A., M. Rodeh, andS.L. Tanimoto: Some Matching Problems for Bipartite Graphs. J. ACM25, 1978, 517–525.

    Article  MathSciNet  MATH  Google Scholar 

  • Ibarra, O., andC. Kim: Fast Approximation Algorithms for the Knapsack and Sum of Subsets Problems. J. ACM22, 1975, 463–468.

    Article  MathSciNet  MATH  Google Scholar 

  • —: Heuristic Algorithms for Scheduling Independent Tasks on Nonidentical Processors. J. ACM24, 1977, 280–289.

    Article  MathSciNet  MATH  Google Scholar 

  • —: Approximation Algorithms for Certain Scheduling Problems, Math. Operations Research3, 1978, 197–204.

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, D.: Fast Algorithms for Bin Packing. J. Comput. System Sci.8, 1974, 272–314.

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, D., A. Demers, J. Ullman, M. Garey, andR. Graham: Worst-Case Performance Bounds for Simple One-Dimensional Packing Algorithms. SIAM J. Comput.3, 1974, 299–325.

    Article  MathSciNet  MATH  Google Scholar 

  • Karp, R.: Reducibility among Combinatorial Problems. Complexity of Computer Computations. Ed. by R.E. Miller, and J.W. Thatcher. New York 1972, 85–104.

  • —: On the Computational Complexity of Combinatorial Problems. Networks5, 1975, 45–68.

    MathSciNet  MATH  Google Scholar 

  • -: The Probabilistic Analysis of Some Combinatorial Search Algorithms. Ed. by J. Traub. Algorithms and Complexity: New Directions and Recent Results. New York 1976, 1–20.

  • —: Probabilistic Analysis of Partitioning Algorithms for the Traveling Salesman Problem in the Plane. Math. Operations Research2, 1977, 209–224.

    Article  MathSciNet  MATH  Google Scholar 

  • —: A Patching Algorithm for the Nonsymetric Traveling Salesman Problem. Memorandum No. UCB/ERL M 78/2, University of California, Berkely, 1978.

    Google Scholar 

  • Kaufman, M.: An Almost-Optimal Algorithm for the Assembly Line Scheduling Problem. IEEE Trans. Comput. C-23, 1974, 1169–1174.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, C.: Analysis of the Expected Performance of Algorithms for the Partition Problem. University of Maryland, Computer Science Technical Report, 1976.

  • Knuth, D.: Structured Programming with Go To's. ACM Surveys6, 1974, 261–302.

    Article  MATH  Google Scholar 

  • Lawler, E.: Fast Approximation Algorithms for Knapsack Problems. Proceedings, 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island, 1977, 206–213.

  • -: Sequencing Jobs to Minimize Total Weighted Completion Time Subject to Precedence Constraints. Ann. Discrete Math. to appear.

  • Lenstra, J.K.: Sequencing by Enumerative Methods. Ph. D. thesis, Mathematisch Centrum, Amsterdam 1976.

    Google Scholar 

  • Lenstra, J.K., A.H.G. Rinnooy Kan: Complexity of Scheduling under Precedence Constraints. Operations Research26, 1978, 22–35.

    Article  MathSciNet  MATH  Google Scholar 

  • Lenstra, J.K., A.H. G. Rinnooy Kan, andP. Brucker: Complexity of Machine Scheduling Problems. Ann. Discrete Math.1, 1977, 343–362.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, S., andP. Kernighan: An Effective Heuristic Algorithm for the Traveling Salesman Problem. Operations Research21, 1973, 498–516.

    Article  MathSciNet  MATH  Google Scholar 

  • Mehlhorn, K.: Effiziente Algorithmen. Stuttgart 1977.

  • Nemhauser, G., andL. Wolsey: Best Algorithms for Approximating the Maximum of a Sub-modular Set Function. Math. Operations Research3, 1978, 177–188.

    Article  MathSciNet  MATH  Google Scholar 

  • Papadimitriou, C.H., andK. Steiglitz: Some Complexity Results for the Traveling Salesman Problem. Proceedings 8th Annual ACM Symposium on Theory of Computing, 1976, 1–9.

  • Posa, L.: Hamiltonian Circuits in Random Graphs. Discrete Math.14, 1976, 359–369.

    Article  MathSciNet  MATH  Google Scholar 

  • Rinnooy Kan, A.H.G.: Machine Scheduling Problems: Classification, Complexity and Computations. The Hague 1976.

  • Sahni, S.: Computationally Related Problems. SIAM J. Comput.3, 1974, 262–279.

    Article  MathSciNet  MATH  Google Scholar 

  • —: Approximate Algorithms for the 0/1 Knapsack Problem. J. ACM22, 1975, 115–124.

    Article  MathSciNet  MATH  Google Scholar 

  • —: Algorithms for Scheduling Independent Tasks, J. ACM23, 1976, 114–127.

    MathSciNet  MATH  Google Scholar 

  • —: General Techniques for Combinatorial Approximation. Operations Research25, 1977, 920–936.

    Article  MathSciNet  MATH  Google Scholar 

  • Sahni, S., andE. Horowitz: Combinatorial Problems: Reducibility and Approximation. Operations Research5, 1978, 718–759.

    Article  MathSciNet  MATH  Google Scholar 

  • Schaefer, T.J.: Complexity of Decision Problems Based on Finite Two-Person Perfect-Information Games. Proceedings 8th Annual ACM Symposium on Theory of Computing, 1976, 41–49.

  • Sethi, R.: On the Complexity of Mean Flow Time Scheduling. Math. Operations Research2, 1977, 320–330.

    Article  MathSciNet  MATH  Google Scholar 

  • Ullman, J.D.: NP-Complete Scheduling Problems, J. Comput. Syst. Sci.10, 1975, 384–393.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An invited survey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brucker, P. NP-Complete operations research problems and approximation algorithms. Zeitschrift für Operations Research 23, 73–94 (1979). https://doi.org/10.1007/BF01951543

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01951543

Keywords

Navigation