Abstract
For a large number of discrete optimization problems like the traveling salesman problem, the quadratic assignment problem, the general flow-shop problem, the knapsack problem etc. all known algorithms have the discouraging property that their (worst-case) running times on a computer grow exponentially with the size of the problem. All efforts to find polynomial bounded algorithms for these problems have failed. Recent results in complexity theory show that these problems belong to the classes ofNP-complete orNP-hard problems. It is a common belief that for problems belonging to these classes no polynomial bounded algorithms exist. Heuristics or approximation algorithms should be applied to these problems.
The aim of this tutorial paper is to give a survey onNP-complete andNP-hard problems and on approximation algorithms. All concepts introduced are illustrated by examples which are closely related to the knapsack problem and can be understood easily. References to most other problems of interest to operations researchers are given.
Zusammenfassung
Für eine große Anzahl von diskreten Optimierungsproblemen wie das Traveling Salesman Problem, das quadratische Zuordnungsproblem, das allgemeine Flowshop Problem, das Rucksackproblem usw. haben alle bisherigen Lösungsansätze die unangenehme Eigenschaft, daß der Rechenumfang der entsprechenden Algorithmen exponentiell mit dem Umfang der Probleme wächst. Alle Bemühungen polynomial beschränkte Verfahren für solche Probleme zu finden waren bislang ergebnislos. Neuere Ergebnisse der Komplexitätstheorie besagen, daß diese Probleme zu den Klassen derNP-vollständigen bzw.NP-schwierigen Probleme gehören und somit nach allgemein verbreiteter Auffassung wohl niemals polynomial lösbar sein werden. Die Anwendung von heuristischen Verfahren oder approximativen Algorithmen scheint der einzige Ausweg in dieser Situation.
Ziel der Arbeit ist es, einen einführenden Uberblick über die Theorie derNP-vollständigen undNP-schwierigen Probleme sowie über approximative Verfahren zu geben. Alle in der Arbeit einge-führten Begriffe werden an einfach verständlichen Beispielen erläutert, die eng mit dem Rucksack-problem verwandt sind.
Für weitere Probleme, die den Unternehmensforscher interessieren, findet der Leser ausführliche Literaturübersichten.
Similar content being viewed by others
References
Aho, A., J. Hopcroft, andJ. Ullman: The Design and Analysis for Computer Algorithms. Reading, Mass. 1974.
Brucker, P.: NP-vollständige Operations Research Probleme. Graphen, Algorithmen, Datenstrukturen. Ed. by H. Noltemeier. München 1976.
-: On the Complexity of Clustering Problems. Optimization and Operations Research. Ed. by R. Henn, B. Korte, and W. Oettli. Berlin 1978.
Brucker, P., M. Garey, andD. Johnson: Scheduling Equal Length Tasks under Tree Like Precedence Constraints to Minimize Maximum Lateness. Math. of Operations Research2, 1977, 275–284. 275–284.
Bruno, J., E.G. Coffman Jr., andR. Sethi: Scheduling Independent Tasks to Recue Mean Finishing-Time. Comm. ACM17, 1974, 504–510.
Christofides, N.: Worst Case Analysis of a New Heuristic for the Traveling Salesman Problem. Management Sci. Res. Report No. 388, Carnegie Mellon University 1976.
Coffman, E.G., Jr.: Computer and Job-Shop Scheduling Theory. New York 1976.
Coffman, E., M. Garey, andD. Johnson: An Application of Bin-Packing to Multiprocessor Scheduling. Siam J. Computing7, 1978, 1–17.
Cook, S.A.: The Complexity of Theorem-Proving Procedures. Proceedings of the Third Annual ACM Symposium on Theory of Computing, 1971, 151–158.
Cornuejols, G., M. Fisher, andG. Nemhauser: Location of Bank accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms. Management Science23, 1977, 789–810.
Dahl, O.J., E.W. Dijkstra, andC.A.R. Hoare: Structured Programming. New York 1972.
Even, S., A. Itai, andA. Shamir: On the Complexity of a Timetable and Multicommodity Flow Problems. SIAM J. Comput.5, 1976, 691–703.
Fisher, M., G. Nemhauser, andL. Wolsey: An Analysis of Approximations for Finding a Maximum Weight Hamilton Circuit. To appear in Operations Research.
Garey, M., andR. Graham: Bounds for Multiprocessor Scheduling with Resource Constraints. SIAM J. Comput.4, 1975, 187–200.
Garey, M., R. Graham, andD. Johnson: SomeNP-complete Geometric Problems. Proceedings of 8th Annual ACM Symposium on Theory of Computing, 1976, 10–22.
—: Performance Guarantees for Scheduling Algorithms. Operations Research26, 1978, 3–21.
Garey, M., andD. Johnson: Complexity Results for Multiprocessor Scheduling under Resource Contraints. SIAM J. Comput.4, 1975, 397–411.
—: Scheduling Tasks with Nonuniform Deadlines on two Processors. J. ACM23, 1976, 461–467.
—: StrongNP-Completeness Results: Motiviation, Examples and Implications. J. ACM25, 1978, 499–508.
Garey, M., D. Johnson, andR. Sethi: The Complexity of Flowshop and Jobshop scheduling. Math. Operations Research1, 1976, 117–129.
Garey, M., D. Johnson, andL. Stockmeyer: Some SimplifiedNP-Complete Problems. J. Theory Comput. Sci.1, 1976, 237–267.
Garey, M., D. Johnson, andR. Tarjan: The Planar Hamilton Circuit Problem isNP-Complete. SIAM J. Comput.5, 1976, 704–714.
Gonzales, T., O. Ibarra, andS. Sahni: Bounds for LPT Schedules on Uniform Processors. SIAM J. Comput.6, 1977, 155–166.
Gonzales, T., andS. Sahni: Open Shop Scheduling to Minimize Finish Time. J. ACM23, 1976, 665–679.
—: Flowshop and Jobshop Schedules: Complexity and Approximation. Operations Research26, 1978, 36–52.
Graham, R.: Bounds for Certain Multiprocessing Anomalies. Bell System Techn. J.45, 1966, 1563–1581.
—: Bounds for Multiprocessing Timing Anomalies. SIAM J. Appl. Math.17, 1969, 416–429.
-: Bounds on the Performance of Scheduling Algorithms. Computer and Job-Shop Scheduling Theory. Ed. by E. Coffman Jr. New York 1976.
Horowitz, E., andS. Sahni: Exact and Approximate Algorithms for Scheduling Nonidentical Processors. J. ACM23, 1976, 317–327.
—: Fundamentals of Computer Algorithms. Computer Science Press, Pontomac, Md. 1978.
Horvath, E., S. Lam, andR. Sethi: A Level Algorithm for Preemptive Scheduling. J. ACM24, 1977, 32–43.
Itai, A.: Two Commodity Flow. J. ACM25, 1978, 596–611.
Itai, A., M. Rodeh, andS.L. Tanimoto: Some Matching Problems for Bipartite Graphs. J. ACM25, 1978, 517–525.
Ibarra, O., andC. Kim: Fast Approximation Algorithms for the Knapsack and Sum of Subsets Problems. J. ACM22, 1975, 463–468.
—: Heuristic Algorithms for Scheduling Independent Tasks on Nonidentical Processors. J. ACM24, 1977, 280–289.
—: Approximation Algorithms for Certain Scheduling Problems, Math. Operations Research3, 1978, 197–204.
Johnson, D.: Fast Algorithms for Bin Packing. J. Comput. System Sci.8, 1974, 272–314.
Johnson, D., A. Demers, J. Ullman, M. Garey, andR. Graham: Worst-Case Performance Bounds for Simple One-Dimensional Packing Algorithms. SIAM J. Comput.3, 1974, 299–325.
Karp, R.: Reducibility among Combinatorial Problems. Complexity of Computer Computations. Ed. by R.E. Miller, and J.W. Thatcher. New York 1972, 85–104.
—: On the Computational Complexity of Combinatorial Problems. Networks5, 1975, 45–68.
-: The Probabilistic Analysis of Some Combinatorial Search Algorithms. Ed. by J. Traub. Algorithms and Complexity: New Directions and Recent Results. New York 1976, 1–20.
—: Probabilistic Analysis of Partitioning Algorithms for the Traveling Salesman Problem in the Plane. Math. Operations Research2, 1977, 209–224.
—: A Patching Algorithm for the Nonsymetric Traveling Salesman Problem. Memorandum No. UCB/ERL M 78/2, University of California, Berkely, 1978.
Kaufman, M.: An Almost-Optimal Algorithm for the Assembly Line Scheduling Problem. IEEE Trans. Comput. C-23, 1974, 1169–1174.
Kim, C.: Analysis of the Expected Performance of Algorithms for the Partition Problem. University of Maryland, Computer Science Technical Report, 1976.
Knuth, D.: Structured Programming with Go To's. ACM Surveys6, 1974, 261–302.
Lawler, E.: Fast Approximation Algorithms for Knapsack Problems. Proceedings, 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island, 1977, 206–213.
-: Sequencing Jobs to Minimize Total Weighted Completion Time Subject to Precedence Constraints. Ann. Discrete Math. to appear.
Lenstra, J.K.: Sequencing by Enumerative Methods. Ph. D. thesis, Mathematisch Centrum, Amsterdam 1976.
Lenstra, J.K., A.H.G. Rinnooy Kan: Complexity of Scheduling under Precedence Constraints. Operations Research26, 1978, 22–35.
Lenstra, J.K., A.H. G. Rinnooy Kan, andP. Brucker: Complexity of Machine Scheduling Problems. Ann. Discrete Math.1, 1977, 343–362.
Lin, S., andP. Kernighan: An Effective Heuristic Algorithm for the Traveling Salesman Problem. Operations Research21, 1973, 498–516.
Mehlhorn, K.: Effiziente Algorithmen. Stuttgart 1977.
Nemhauser, G., andL. Wolsey: Best Algorithms for Approximating the Maximum of a Sub-modular Set Function. Math. Operations Research3, 1978, 177–188.
Papadimitriou, C.H., andK. Steiglitz: Some Complexity Results for the Traveling Salesman Problem. Proceedings 8th Annual ACM Symposium on Theory of Computing, 1976, 1–9.
Posa, L.: Hamiltonian Circuits in Random Graphs. Discrete Math.14, 1976, 359–369.
Rinnooy Kan, A.H.G.: Machine Scheduling Problems: Classification, Complexity and Computations. The Hague 1976.
Sahni, S.: Computationally Related Problems. SIAM J. Comput.3, 1974, 262–279.
—: Approximate Algorithms for the 0/1 Knapsack Problem. J. ACM22, 1975, 115–124.
—: Algorithms for Scheduling Independent Tasks, J. ACM23, 1976, 114–127.
—: General Techniques for Combinatorial Approximation. Operations Research25, 1977, 920–936.
Sahni, S., andE. Horowitz: Combinatorial Problems: Reducibility and Approximation. Operations Research5, 1978, 718–759.
Schaefer, T.J.: Complexity of Decision Problems Based on Finite Two-Person Perfect-Information Games. Proceedings 8th Annual ACM Symposium on Theory of Computing, 1976, 41–49.
Sethi, R.: On the Complexity of Mean Flow Time Scheduling. Math. Operations Research2, 1977, 320–330.
Ullman, J.D.: NP-Complete Scheduling Problems, J. Comput. Syst. Sci.10, 1975, 384–393.
Author information
Authors and Affiliations
Additional information
An invited survey.
Rights and permissions
About this article
Cite this article
Brucker, P. NP-Complete operations research problems and approximation algorithms. Zeitschrift für Operations Research 23, 73–94 (1979). https://doi.org/10.1007/BF01951543
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF01951543