Abstract
We discuss the suppression of Coulomb effects in the low temperature conductanceg(T) of small tunnel junctions with increasing dissipation or bare conductanceg. The conductance is expressed in terms of the spin correlation fuction of a classical one dimensionalXY-model with ferromagnetic nearest neighbor plus inverse square interaction. It is shown that at low temperatures the conductance vanishes asymptotically likeT 2 instead of exponentially. A Coulomb gap in the sense of a thermally activated contribution tog(T) is present only for bare conductances smaller thang c ∼1. A simple model for the spin correlation functions is compared with experiments.
Similar content being viewed by others
References
Averin, D.V., Likharev, K.K.: In: Mesoscopic phenomena in solids. Altshuler, B.L., Lee, P.A., Webb, R.A. (eds.) Amsterdam: Elsevier 1991
Schön, G., Zaikin, A.D.: Phys. Rep.198, 237, (1990)
Geerligs, L.J., Anderegg, V.F., Jeugd, C.A. van der, Romijn, J., Mooij, J.E.: Europhys. Lett.10, 79 (1989)
Averin, D.V., Likharev, K.K.: J. Low Temp. Phys.62, 345 (1986)
Ho, T.L.: Phys. Rev. Lett.51, 2060 (1983)
Ben-Jacob, E., Mottola, E., Schön, G.: Phys. Rev. Lett.51, 2064 (1983)
Mermin, N.D.: J Math. Phys.8, 1061 (1967)
Simanek, F.: Phys. Lett.119A, 477 (1987)
Griffiths, R.B.: J. Math. Phys.8, 478 (1967)
Ginibre, J.: Commun. Math. Phys.16, 310 (1970)
Aizenman, M., Simon, B.: Phys. Lett.76A, 281 (1980)
Anderson, P.W., Yuval, G., Hamann, D.R.: Phys. Rev. B1, 4464 (1970), the inverse square behavior ofS(τ) was also found in the related model of a weak Josephson junction with quasiparticle dissipation by F. Guinea, G. Schön: Europhys. Lett.1, 585 (1986); J. Low Temp. Phys.69, 219 (1987)
Anderson, P.W., Yuval, G.: J. Phys. C4, 607 (1971), note thatT 1 c =J JR =4 is the transition temperature in the limit of a strong additional nearest neighbor interactionJ NN ≫1 which arises from our kinetic energy term in the limit of a small cutoff τ c ≪π2ħ/2gU
Scalia, V., Falci, G., Fazio, R., Giaquinta, G.: Physica B165, 975 (1990); and Z. Phys. B — Condensed Matter85, 427 (1991); see also R. Brown, E. Simanek: Phys. Rev. B38, 9264 (1988); S. Romano: Nuovo Cimento D10, 1459 (1988)
Kosterlitz, J.M.: Phys. Rev. Lett.37, 1577 (1976)
Odintsov, A.A.: Sov. Phys. JETP67, 1265 (1988)
Thouless, D.J.: Phys. Rev.187, 732 (1969)
Toulouse, G., Kléman, M.: J. Phys. (Paris) Lett.37, L149 (1976)
Korshunov, S.E.: JETP Lett.45, 435 (1987)
This problem has recently been treated by S.V. Panyukov, A.D. Zaikin: Preprint (1991) who consider the effects of dissipation on the Coulomb blockade by discussing the ground state energy as a function of an external charge in the limitg≫1, see also S.V. Panyukov, A.D. Zaikin: J. Low Temp. Phys.73, 1 (1988)
Scharpf, M.: Diplom thesis Universität Göttingen (1991)
The logarithmic interaction of defects in the inverse square Ising model leads to corresponding values α=1/2 and α=1 in the related dissipative two state formulation. For α≧1/2 the real time spin correlation function 〈σ z (t σz(0)〉 has lost its oscillating behavior present for α<1/2 while for α>=1 it becomes nonergodic\(\mathop {\lim }\limits_{t \to \infty } \left\langle {\sigma _z (t) \sigma _z (0)} \right\rangle = const\). Contrary to the present situation, however, the condition of dilute gas of defects is well obeyed there. For a detailed reference see Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W.: Rev. Mod. Phys.59, 1 (1987)
Cleland, A.N., Schmidt, J.M., Clarke, J.: Phys. Rev. Lett.64, 1565 (1990)
Devoret, M.H., Esteve, D., Grabert, H., Ingold, G.L., Pothier, H., Urbina, C.: Phys. Rev. Lett.64, 1824 (1990) Girvin, S.M., Glazman, L.I., Jonson, M., Penn, D.R., Stiles, M.D.: Phys. Rev. Lett.64, 3183 (1990)
It should be pointed out that the agreement between the experiments of Ref. 3, and the single junction theory by Brown, R., Simanek, E.: Phys. Rev. B34, 2957 (1986) must be considered as fortuitous. Indeed the theory is based on an incorrect expression forg(T) which leads tog(T→0)≈g 0 T/U in the limitg→0 instead of the correct Coulomb gap behavior (9)
Averin, D.V., Odintsov, A.A.: Phys. Lett.140A, 251 (1989) it should be pointed out that their results are derived in perturbation theory, while here we have shown thatg(T→0)≈T 2 for arbitrary values ofg
Geerligs, L.J., Averin, D.V., Mooij, J.E.: Phys. Rev. Lett.65, 3037 (1990)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Zwerger, W., Scharpf, M. Crossover from Coulomb-blockade to ohmic conduction in small tunnel junctions. Z. Physik B - Condensed Matter 85, 421–426 (1991). https://doi.org/10.1007/BF01307639
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01307639