Nothing Special   »   [go: up one dir, main page]

Skip to main content

Securing Manufacturing Intelligence for the Industrial Internet of Things

  • Conference paper
  • First Online:
Fourth International Congress on Information and Communication Technology

Abstract

Widespread interest in the emerging area of predictive analytics is driving the manufacturing industry to explore new approaches to the collection and management of data through Industrial Internet of Things (IIoT) devices. Analytics processing for Business Intelligence (BI) is an intensive task, presenting both a competitive advantage as well as a security vulnerability in terms of the potential for losing Intellectual property (IP). This article explores two approaches to securing BI in the manufacturing domain. Simulation results indicate that a Unified Threat Management (UTM) model is simpler to maintain and has less potential vulnerabilities than a distributed security model. Conversely, a distributed model of security out-performs the UTM model and offers more scope for the use of existing hardware resources. In conclusion, a hybrid security model is proposed where security controls are segregated into a multi-cloud architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashton, K.: That “Internet of Things” thing. RFiD J. (2009)

    Google Scholar 

  2. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)

    Article  Google Scholar 

  3. Chen, F., Deng, P., Wan, J., Zhang, D., Vasilakos, A., Rong, X.: Data mining for the Internet of things: literature review and challenges. Int. J. Distrib. Sens. Netw. 11(8) (2015)

    Google Scholar 

  4. Gartner: Gartner Says 6.4 Billion Connected Things? Will Be in Use in 2016, Up 30 Percent From 2015?, Gartner website. http://www.gartner.com/newsroom/id/3165317. 10th Nov (2015)

  5. Ikram, A., Anjum, A., Hill, R., Antonopoulos, N., Liu, L., Sotiriadis, S.: Approaching the Internet of things (IoT): a modelling, analysis and abstraction framework. Concurrency Comput. Pract. Experience 27(8), 1966–1984 (2015)

    Article  Google Scholar 

  6. Sundmaeker, H., Guillemin, P., Friess, P., Woelfflé, S.: Vision and challenges for realising the Internet of Things. Cluster of European Research Projects on the Internet of Things, CERP IoT (2010)

    Google Scholar 

  7. PWC: Industry 4.0: building the digital enterprise. http://www.pwc.com/industry40 (2016)

  8. Wang, S., Wan, J., Zhang, D., Li, D. Zhang, C.: Towards the smart factory for Industrie 4.0: a self-organized multi-agent system assisted with big data based feedback and coordination, Comput. Netw. 101, 158–168 (2016)

    Google Scholar 

  9. Wang, S., Wan, J., Li, D., Zhang, C.: Implementing smart factory of industrie 4.0: an outlook. Int. J. Distrib. Sens. Netw. 12, 1 (2016)

    Google Scholar 

  10. Liu, Q., Wan, J., Zhou, K.: Cloud manufacturing service system for industrial-cluster-oriented application. J. Internet Technol. 15(3), 373–380 (2014)

    Google Scholar 

  11. Hill, M., Devitt, J., Anjum, A., Ali, M.: Towards In-Transit Analytics for Industry 4.0. FCST2017. IEEE Computer Society (2017)

    Google Scholar 

  12. Katic, N., Quirchmayr, G., Schiefer, J., Stolba, M., Tjoa, A.M.: A Prototype Model for Data Warehouse Security Based on Metadata. University of Vienna, pp. 1–9 (2006)

    Google Scholar 

  13. Rosenthal, R., Sciore, E.: View security as the basis for data warehouse security. In: Jeusfeld, M., Shu, H., Staudt, M., Vossen, G. (eds.) Proceedings of the International Workshop on Design and Management of Data Warehouses (DMDW’2000), pp. 1–8. Stockholm, Sweden, June 5–6 (2000)

    Google Scholar 

  14. Kadan, A.: Security Management of Intelligent Technologies in Business Intelligence Systems. Yanka Kupala State University of Grodno, pp. 1–3 (2012)

    Google Scholar 

  15. Fernandez-Medinaa, E., Trujillo, J., Villarroel, R., Piattini, M.: Developing secure data warehouses with a UML extension. Inform. Syst. 32, 826–856 (2007)

    Article  Google Scholar 

  16. Ahmad, S., Ahmad, R.: An Improved Security Framework for Data Warehouse: A Hybrid Approach. IEEE, pp. 1586–1590

    Google Scholar 

  17. Brankovic, L., Estivill-Castro, V.: Privacy issues in knowledge discovery and data mining. Department of Computer Science and Software Engineering, The University of Newcastle, Australia, pp. 1–12 (2000)

    Google Scholar 

  18. Al-Aqrabi, H., Liu, L., Hill, R., Antonopoulos, N.: Taking the business intelligence to the clouds. In: 9th International Conference on Embedded Software and Systems (HPCC-ICESS), pp. 953–958. IEEE Computer Society, Liverpool (2012)

    Google Scholar 

  19. Blanco, C., Prez-Castillo, R., Hernndez, A., Fernndez-Medina, E., Trujillo, J.: Towards a modernization process for secure data warehouses. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) LNCS, vol. 5691, pp. 24–35. Springer, Heidelberg (2009)

    Google Scholar 

  20. Stobla, N., Banek, M., Tjoa, A. M.: The Security Issue of Federated Data Warehouses in the Area of Evidence-Based Medicine. Vienna University of Technology and University of Zagreb, pp. 1–11

    Google Scholar 

  21. Abadi, D. J.: Data management in the cloud: limitations and opportunities. Data Eng. 32(1), 3–11 (IEEE Computer Society) (2009)

    Google Scholar 

  22. Fienberg, S.E.: Privacy and confidentiality in an e-Commerce world: data mining, data warehousing, matching and disclosure limitation. Statistical Sci. 21(2), 143–154 (Institute of mathematical Statistics) (2006)

    Google Scholar 

  23. Al-Aqrabi, H., Liu, L., Hill, R., Antonopoulos, N.: A multi-layer hierarchical inter-cloud connectivity model for sequential packet inspection of tenant sessions accessing BI as a service. In: Proceedings of (CSS) and (ICESS), pp. 137–144. IEEE, France, Paris (2014)

    Google Scholar 

  24. Al-Aqrabi, H., Liu, L., Hill, H., Cui, L., Li, J.: Faceted search in business intelligence on the cloud. In: Proceedings of GREENCOM-ITHINGS-CPSCOM, pp. 842–849. IEEE, China, Beijing (2013)

    Google Scholar 

  25. Beer, M., Huang, W., Hill, R.: Designing community care systems with AUML. In: Proceedings of the International Conference on Computer, Communication and Control Technologies (CCCT ‘03) and the 9th International Conference on Information Systems Analysis and Synthesis (ISAS ‘03), Orlando, USA, July 31–August 2, IEEE Computer Society, pp. 247–253 (2003)

    Google Scholar 

  26. Farhan, M.S., Marie, M.E., El-Fangary, L.M., Helmy, Y.K.: Transforming conceptual model into logical model for temporal data warehouse security: a case study. Int. J. Adv. Comput. Sci. Appl. 3(3), 115–122 (2012)

    Google Scholar 

  27. Priebe, T., Pernul, G.: Towards OLAP security design survey and research issues. In: Proceedings of Third ACM International Workshop on Data Warehousing and OLAP (DOLAP 2000), pp. 33–40, 10 Nov 2000. ACM, McLean, VA, USA (2000)

    Google Scholar 

  28. Cuzzocrea, A., Bertino, E., Sacca, D.: Towards a theory for privacy preserving distributed OLAP. In: PAIS12, pp. 1-6, 30 March 2012. ACM, Berlin, Germany (2012)

    Google Scholar 

  29. Agrawal, R., Srikant, R., Thomas, D.: Privacy preserving OLAP. In: SIGMOD 2005, pp. 1–12, 14–16 June 2005. ACM, Baltimore, Maryland, USA (2005)

    Google Scholar 

  30. Shu, Z., Wan, J., Zhang, D., Li, D.: Cloud-integrated cyber-physical systems for complex industrial applications. Mobile Netw. Appl., 1–14 (2015)

    Google Scholar 

  31. Li, X., Li, D., Wan, J., Vasilakos, A., Lai, C., Wang, S.: A review of industrial wireless networks in the context of industry 4.0. Wireless Netw., 1–19 (2015)

    Google Scholar 

  32. Baker, C., Anjum, A., Hill, R., Bessis, N., Liaquat Kiani, S.: Improving cloud datacentre scalability, agility and performance using OpenFlow. In: Proceedings of the 4th International Conference on Intelligent Networking and Collaborative Systems (INCoS), IEEE Computer Society (2012)

    Google Scholar 

  33. Wang, L., Jajodia, S., Wijesekera, D.: Securing OLAP data cubes against privacy breaches. In: Proceedings of the 2004 IEEE Symposium on Security and Privacy (S&P04), pp. 1–15. IEEE Computer Society (2004)

    Google Scholar 

  34. Shadija, D., Rezai, M., Hill, R.: Towards an understanding of microservices. In: 23rd International Conference on Automation and Computing (ICAC). IEEE Computer Society, Huddersfield, UK (2017). https://doi.org/10.23919/IConAC.2017.8082018

  35. Garcia-Campos, J.M., Reina, D.G., Toral, S.L., Bessis, N., Barrero, F., Asimakopoulou, E., Hill, R.: Performance evaluation of reactive routing protocols for VANETs in urban scenarios following good simulation practices, In: 2015 9th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), Santa Cantarina, Brazil, 8–10 July, pp. 1–8. ISBN: 978-1-4799-8872-3 (2015). https://doi.org/10.1109/IMIS.2015.5

  36. A1-Aqrabi, H., Liu, L., Hill, R., Antonopoulos, N.: Business intelligence security on the clouds: challenges solutions and future directions. In: Proceedings of 7th International Symposium on Service Oriented System Engineering, pp. 137–144. 25–28 March 2013

    Google Scholar 

  37. Sotiriadis, S., Bessis, N., Antonopoulos, N., Hill, R.: Meta-scheduling algorithms for managing inter-cloud interoperability. Int. J. High Perform. Comput. Netw. 7(2), 156–172 (2013)

    Article  Google Scholar 

  38. Sotiriadis, S., Bessis, N., Anjum, A., Buyya, R.: An inter-cloud meta-scheduling (icms) simulation framework: Architecture and evaluation. IEEE Trans. Serv. Comput. (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Hill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-Aqrabi, H., Hill, R., Lane, P., Aagela, H. (2020). Securing Manufacturing Intelligence for the Industrial Internet of Things. In: Yang, XS., Sherratt, S., Dey, N., Joshi, A. (eds) Fourth International Congress on Information and Communication Technology. Advances in Intelligent Systems and Computing, vol 1027. Springer, Singapore. https://doi.org/10.1007/978-981-32-9343-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9343-4_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9342-7

  • Online ISBN: 978-981-32-9343-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics