Abstract
A Rugged Pseudorandom Permutation (RPRP) is a variable-input-length tweakable cipher satisfying a security notion that is intermediate between tweakable PRP and tweakable SPRP. It was introduced at CRYPTO 2022 by Degabriele and Karadžić, who additionally showed how to generically convert such a primitive into nonce-based and nonce-hiding AEAD schemes satisfying either misuse-resistance or release-of-unverified-plaintext security as well as Nonce-Set AEAD which has applications in protocols like QUIC and DTLS. Their work shows that RPRPs are powerful and versatile cryptographic primitives. However, the RPRP security notion itself can seem rather contrived, and the motivation behind it is not immediately clear. Moreover, they only provided a single RPRP construction, called UIV, which puts into question the generality of their modular approach and whether other instantiations are even possible. In this work, we address this question positively by presenting new RPRP constructions, thereby validating their modular approach and providing further justification in support of the RPRP security definition. Furthermore, we present a more refined view of their results by showing that strictly weaker RPRP variants, which we introduce, suffice for many of their transformations. From a theoretical perspective, our results show that the well-known three-round Feistel structure achieves stronger security as a permutation than a mere pseudorandom permutation—as was established in the seminal result by Luby and Rackoff. We conclude on a more practical note by showing how to extend the left domain of one RPRP construction for applications that require larger values in order to meet the desired level of security.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
One can equivalently write \(\textsf{FE}_{K_2}(T, I, \left|X_R \right|)\) as \(\textsf{FE}_{K_2}(T\Vert I, \left|X_R \right|)\).
- 2.
In case of a \(\textsc {Gu}\) query, it will hold \(j < i\).
- 3.
Following the previous notation, it holds \(k'_{1, i} = k_{1, i} + 1\), where \(k_{1, i}\) is the number of full blocks in the right part of the input.
References
Abed, F., Forler, C., List, E., Lucks, S., Wenzel, J.: RIV for robust authenticated encryption. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 23–42. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_2
Andreeva, E., Bhati, A.S., Preneel, B., Vizár, D.: 1, 2, 3, fork: Counter mode variants based on a generalized forkcipher. IACR Trans. Symm. Cryptol. 2021(3), 1–35 (2021)
Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How to securely release unverified plaintext in authenticated encryption. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 105–125. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_6
Bacuieti, N., Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: Jammin’ on the deck. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part II. LNCS, vol. 13792, pp. 555–584. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22966-4_19
Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_24
Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_19
Chen, Y.L., Mennink, B., Nandi, M.: Short variable length domain extenders with beyond birthday bound security. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I. LNCS, vol. 11272, pp. 244–274. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_9
Coron, J.-S., Dodis, Y., Mandal, A., Seurin, Y.: A domain extender for the ideal cipher. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 273–289. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_17
Crowley, P., Huckleberry, N., Biggers, E.: Length-preserving encryption with HCTR2. Cryptology ePrint Archive, Report 2021/1441 (2021). https://eprint.iacr.org/2021/1441
Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of Xoodoo and Xoofff. IACR Trans. Symm. Cryptol. 2018(4), 1–38 (2018)
Degabriele, J.P., Govinden, J., Günther, F., Paterson, K.G.: The security of ChaCha20-Poly1305 in the multi-user setting. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021, pp. 1981–2003. ACM Press, November 2021
Degabriele, J.P., Karadžić, V., Melloni, A., Münch, J.-P., Stam, M.: Rugged pseudorandom permutations and their applications. Presented at the IACR Real World Crypto Symposium (2022)
Degabriele, J.P., Karadžić, V.: Overloading the nonce: rugged PRPs, nonce-set AEAD, and order-resilient channels. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV. LNCS, vol. 13510, pp. 264–295. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15985-5_10
Dutta, A., Nandi, M.: Tweakable HCTR: a BBB secure tweakable enciphering scheme. In: Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 47–69. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05378-9_3
Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Cryptol. 24(3), 588–613 (2011)
Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)
McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode of operation (full version). Cryptology ePrint Archive, Report 2004/193 (2004). https://eprint.iacr.org/2004/193
Minematsu, K., Iwata, T.: Building blockcipher from tweakable blockcipher: extending FSE 2009 proposal. In: Chen, L. (ed.) IMACC 2011. LNCS, vol. 7089, pp. 391–412. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25516-8_24
National Institute of Standards and Technology (NIST): The Third NIST Workshop on Block Cipher Modes of Operation (2023). https://csrc.nist.gov/Events/2023/third-workshop-on-block-cipher-modes-of-operation
Patarin, J.: The “Coefficients H’’ technique. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4_21
Rogaway, P.: Bucket hashing and its application to fast message authentication. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 29–42. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_3
Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_23
Shrimpton, T., Terashima, R.S.: A modular framework for building variable-input-length tweakable ciphers. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 405–423. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_21
Wang, P., Feng, D., Wu, W.: HCTR: a variable-input-length enciphering mode. In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188. Springer, Heidelberg (2005). https://doi.org/10.1007/11599548_15
Acknowledgments
We thank the anonymous ASIACRYPT 2023 reviewers for their constructive comments. This research was supported by the German Federal Ministry of Education and Research and the Hessen State Ministry for Higher Education, Research and the Arts within their joint support of the National Research Center for Applied Cybersecurity ATHENE.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Degabriele, J.P., Karadžić, V. (2023). Populating the Zoo of Rugged Pseudorandom Permutations. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14445. Springer, Singapore. https://doi.org/10.1007/978-981-99-8742-9_9
Download citation
DOI: https://doi.org/10.1007/978-981-99-8742-9_9
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8741-2
Online ISBN: 978-981-99-8742-9
eBook Packages: Computer ScienceComputer Science (R0)