Abstract
HCTR, proposed by Wang et al., is one of the most efficient candidates of tweakable enciphering schemes that turns an n-bit block cipher into a variable input length tweakable block cipher. Wang et al. have shown that HCTR offers a cubic security bound against all adaptive chosen plaintext and chosen ciphertext adversaries. Later in FSE 2008, Chakraborty and Nandi have improved its bound to \(O(\sigma ^2/2^n)\), where \(\sigma \) is the total number of blocks queried and n is the block size of the block cipher. In this paper, we propose tweakable HCTR that turns an n-bit tweakable block cipher to a variable input length tweakable block cipher by replacing all the block cipher calls of HCTR with tweakable block cipher. We show that when there is no repetition of the tweak, tweakable HCTR enjoys the optimal security against all adaptive chosen plaintext and chosen ciphertext adversaries. However, if the repetition of the tweak is limited, then the security of the construction remains close to the security bound in no repetition of the tweak case. Hence, it gives a graceful security degradation with the maximum number of repetition of tweaks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A length preserving permutation over \(\mathcal {M}\) is a permutation \(\pi \) such that for all \(M \in \mathcal {M}\), \(|\pi (M)| = |M|\).
- 2.
An almost-xor universal hash function is a keyed hash function such that for any two distinct messages, the probability, over the random draw of a hash key, the hash differential being equal to a specific output is small.
- 3.
A tweakable block cipher is basically a simple block cipher with an additional parameter called tweak.
- 4.
This security bound is beyond birthday in terms of the block size n, but with respect to the input size of TBC (i.e., \(n + m\) bits), it is the birthday bound.
- 5.
Informally, a keyed hash function is said to be a partial-almost xor universal hash function, if for any two distinct inputs, the probability over the random draw of the hash key, that the first n-bit part of the sum of their hash output takes any value and the remaining m-bit part of the hash value collides, is very small.
References
Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_32
Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_24
Bhaumik, R., Nandi, M.: An inverse-free single-keyed tweakable enciphering scheme. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 159–180. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_7
Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 18(2), 143–154 (1979)
Chakraborty, D., Ghosh, S., Sarkar, P.: A fast single-key two-level universal hash function. IACR Trans. Symmetric Cryptol. 2017(1), 106–128 (2017)
Chakraborty, D., Nandi, M.: An improved security bound for HCTR. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 289–302. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4_18
Chakraborty, D., Sarkar, P.: HCH: a new tweakable enciphering scheme using the hash-encrypt-hash approach. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 287–302. Springer, Heidelberg (2006). https://doi.org/10.1007/11941378_21
Chakraborty, D., Sarkar, P.: A new mode of encryption providing a tweakable strong pseudo-random permutation. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 293–309. Springer, Heidelberg (2006). https://doi.org/10.1007/11799313_19
Chen, S., Lampe, R., Lee, J., Seurin, Y., Steinberger, J.: Minimizing the two-round even-mansour cipher. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 39–56. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_3
Daemen, J., Rijmen, V.: Rijndael for AES. In: AES Candidate Conference, pp. 343–348 (2000)
Datta, N., Dutta, A., Nandi, M., Yasuda, K.: Encrypt or decrypt? to make a single-key beyond birthday secure nonce-based MAC. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 631–661. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_21
Halevi, S.: EME*: extending EME to handle arbitrary-length messages with associated data. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 315–327. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30556-9_25
Halevi, S.: Invertible universal hashing and the TET encryption mode. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 412–429. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_23
Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_28
Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24660-2_23
Jha, A., List, E., Minematsu, K., Mishra, S., Nandi, M.: XHX - A framework for optimally secure tweakable block ciphers from classical block ciphers and universal hashing. IACR Cryptology ePrint Archive 2017, p. 1075 (2017)
Lee, J., Luykx, A., Mennink, B., Minematsu, K.: Connecting tweakable and multi-key blockcipher security. Des. Codes Crypt. 86(3), 623–640 (2018)
Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)
Mancillas-López, C., Chakraborty, D., Rodríguez-Henríquez, F.: Efficient implementations of some tweakable enciphering schemes in reconfigurable hardware. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 414–424. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77026-8_33
McGrew, D.A., Fluhrer, S.R.: The extended codebook (XCB) mode of operation. IACR Cryptology ePrint Archive 2004, p. 278 (2004)
McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30556-9_27
Mennink, B.: Towards tight security of cascaded LRW2. IACR Cryptology ePrint Archive 2018, p. 434 (2018)
Minematsu, K.: Beyond-birthday-bound security based on tweakable block cipher. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 308–326. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03317-9_19
Minematsu, K., Iwata, T.: Building blockcipher from tweakable blockcipher: extending FSE 2009 Proposal. In: Chen, L. (ed.) IMACC 2011. LNCS, vol. 7089, pp. 391–412. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25516-8_24
Minematsu, K., Iwata, T.: Tweak-length extension for tweakable blockciphers. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 77–93. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27239-9_5
Minematsu, K., Matsushima, T.: Tweakable enciphering schemes from hash-sum-expansion. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 252–267. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77026-8_19
Naor, M., Reingold, O.: A pseudo-random encryption mode. www.wisdom.weizmann.ac.il/naor
Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-rackoff revisited. J. Cryptol. 12(1), 29–66 (1999)
National Bureau of Standards. Data encryption standard. Federal Information Processing Standard (1977)
Patarin, J.: A proof of security in O(2n) for the Xor of two random permutations. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 232–248. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85093-9_22
Jacques, P.: The “Coefficients H” Technique. In: Selected Areas in Cryptography, SAC, , pp. 328–345 (2008)
Peyrin, T., Seurin, Y.: Counter-in-tweak: authenticated encryption modes for tweakable block ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 33–63. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_2
Phillip, R., Mihir, B., John, B., Krovetz, T.: O.C.B.: a block-cipher mode of operation for efficient authenticated encryption, In: Proceedings of the 8th ACM Conference on Computer and Communications Security, CCS 2001, Philadelphia, Pennsylvania, USA, 6-8 November 2001, pp. 196–205 (2001)
Sarkar, P.: Improving upon the TET mode of operation. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 180–192. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76788-6_15
Wang, P., Feng, D., Wu, W.: HCTR: a variable-input-length enciphering mode. In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188. Springer, Heidelberg (2005). https://doi.org/10.1007/11599548_15
Smith, J.L., Ehrsam, W.F., Meyer, C.H.W., Tuchman, W.L.: Message verification and transmission error detection by block chaining. US Patent 4074066 (1976)
Acknowledgements
Authors are supported by the WISEKEY project of R.C.Bose Centre for Cryptology and Security. The authors would like to thank all the anonymous reviewers of Indocrypt 2018 for their invaluable comments and suggestions that help to improve the overall quality of the paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Dutta, A., Nandi, M. (2018). Tweakable HCTR: A BBB Secure Tweakable Enciphering Scheme. In: Chakraborty, D., Iwata, T. (eds) Progress in Cryptology – INDOCRYPT 2018. INDOCRYPT 2018. Lecture Notes in Computer Science(), vol 11356. Springer, Cham. https://doi.org/10.1007/978-3-030-05378-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-05378-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05377-2
Online ISBN: 978-3-030-05378-9
eBook Packages: Computer ScienceComputer Science (R0)