Nothing Special   »   [go: up one dir, main page]

Skip to main content

Co-regularized Facial Age Estimation with Graph-Causal Learning

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14432))

Included in the following conference series:

  • 629 Accesses

Abstract

In this paper, we present a graph-causal regularization (GCR) for robust facial age estimation. Existing label facial age estimation methods often suffer from overfitting and overconfidence issues due to limited data and domain bias. To address these challenges and leveraging the chronological correlation of age labels, we propose a dynamic graph learning method that enforces causal regularization to discover an attentive feature space while preserving age label dependencies. To mitigate domain bias and enhance aging details, our approach incorporates counterfactual attention and bilateral pooling fusion techniques. Consequently, the proposed GCR achieves reliable feature learning and accurate ordinal decision-making within a globally-tuned framework. Extensive experiments under widely-used protocols demonstrate the superior performance of GCR compared to state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    GCR outperformed other methods except for DLDL v2 and AVDL in Morph II setting I. However, they were pretrained on large dataset (i.e. IMDB-WIKI [24]) or private dataset.

References

  1. Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns: application to face recognition. TPAMI 28(12), 2037–2041 (2006)

    Article  Google Scholar 

  2. Bao, Z., Tan, Z., Wan, J., Ma, X., Guo, G., Lei, Z.: Divergence-driven consistency training for semi-supervised facial age estimation. TIFS 18, 221–232 (2022)

    Google Scholar 

  3. Cai, X., Nie, F., et al.: New graph structured sparsity model for multi-label image annotations. In: ICCV, pp. 801–808 (2013)

    Google Scholar 

  4. Dagher, I., Barbara, D.: Facial age estimation using pre-trained cnn and transfer learning. Multimed. Tools. Appl. 80, 20369–20380 (2021)

    Article  Google Scholar 

  5. Deng, Z., et al: PML: progressive margin loss for long-tailed age classification. In: CVPR, pp. 10503–10512 (2021)

    Google Scholar 

  6. Escalera, S., et al.: Chalearn looking at people 2015: apparent age and cultural event recognition datasets and results. In: ICCV Workshops, pp. 243–251 (2015)

    Google Scholar 

  7. Fu, Y., Guo, G., Huang, T.S.: Age synthesis and estimation via faces: a survey. TPAMI 32(11), 1955–1976 (2010)

    Article  Google Scholar 

  8. Gao, B., et al.: Age estimation using expectation of label distribution learning. In: Lang, J. (ed.) IJCAI, pp. 712–718 (2018)

    Google Scholar 

  9. Geng, X., Ji, R.: Label distribution learning. In: ICDM Workshops, pp. 377–383 (2013)

    Google Scholar 

  10. Geng, X., Yin, C., Zhou, Z.: Facial age estimation by learning from label distributions. TPAMI 35(10), 2401–2412 (2013). https://doi.org/10.1109/TPAMI.2013.51

    Article  Google Scholar 

  11. Guo, G., Mu, G., Fu, Y., Huang, T.S.: Human age estimation using bio-inspired features. In: CVPR, pp. 112–119 (2009)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  13. He, Z., et al.: Data-dependent label distribution learning for age estimation. TIP, pp. 3846–3858 (2017)

    Google Scholar 

  14. Jr., K.R., Tesafaye, T.: MORPH: a longitudinal image database of normal adult age-progression. In: FG, pp. 341–345 (2006)

    Google Scholar 

  15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR. OpenReview.net (2017)

    Google Scholar 

  16. Lanitis, A., Draganova, C., Christodoulou, C.: Comparing different classifiers for automatic age estimation. SMC 34(1), 621–628 (2004)

    Google Scholar 

  17. Li, W., Huang, X., Zhu, Z., Tang, Y., Li, X., Zhou, J., Lu, J.: Ordinalclip: learning rank prompts for language-guided ordinal regression. arXiv preprint arXiv:2206.02338 (2022)

  18. Li, W., Lu, J., Feng, J., Xu, C., Zhou, J., Tian, Q.: Bridgenet: a continuity-aware probabilistic network for age estimation. In: CVPR, pp. 1145–1154 (2019)

    Google Scholar 

  19. Li, W., Lu, J., Wuerkaixi, A., Feng, J., Zhou, J.: Metaage: meta-learning personalized age estimators. TIP 31, 4761–4775 (2022)

    Google Scholar 

  20. Liu, C., Ding, H., Jiang, X.: Gres: generalized referring expression segmentation. In: CVPR, pp. 23592–23601 (2023)

    Google Scholar 

  21. Liu, H., Lu, J., Feng, J., Zhou, J.: Ordinal deep feature learning for facial age estimation. In: FG, pp. 157–164 (2017)

    Google Scholar 

  22. Liu, X., Zou, Y., Kuang, H., Ma, X.: Face image age estimation based on data augmentation and lightweight convolutional neural network. Symmetry 12(1), 146 (2020)

    Article  Google Scholar 

  23. Rao, Y., et al.: Counterfactual attention learning for fine-grained visual categorization and re-identification. In: ICCV, pp. 1005–1014 (2021)

    Google Scholar 

  24. Rothe, R., Timofte, R., Gool, L.V.: DEX: deep expectation of apparent age from a single image. In: ICCV Workshop, pp. 252–257 (2015)

    Google Scholar 

  25. Rothe, R., Timofte, R., Gool, L.V.: Ijcv. Int. J. Comput. Vis. 126(2–4), 144–157 (2018)

    Article  Google Scholar 

  26. Shen, W., Guo, Y., Wang, Y., Zhao, K., Wang, B., Yuille, A.L.: Deep regression forests for age estimation. In: CVPR, pp. 2304–2313 (2018)

    Google Scholar 

  27. Tan, Z., et al.: Efficient group-n encoding and decoding for facial age estimation. TPAMI, pp. 2610–2623 (2018)

    Google Scholar 

  28. Tan, Z., etal.: Deeply-learned hybrid representations for facial age estimation. In: IJCAI, pp. 3548–3554 (2019)

    Google Scholar 

  29. Vermeire, T., Martens, D.: Explainable image classification with evidence counterfactual. CoRR abs/2004.07511 (2020)

    Google Scholar 

  30. Wang, T., Zhou, C., Sun, Q., Zhang, H.: Causal attention for unbiased visual recognition. CoRR abs/2108.08782 (2021)

    Google Scholar 

  31. Wang, X., Saxon, M., Li, J., Zhang, H., Zhang, K., Wang, W.Y.: Causal balancing for domain generalization. arXiv preprint arXiv:2206.05263 (2022)

  32. Woo, S., Park, J., et al.: CBAM: convolutional block attention module. In: ECCV, pp. 3–19 (2018)

    Google Scholar 

  33. Zhang, C., Liu, S., Xu, X., Zhu, C.: C3AE: exploring the limits of compact model for age estimation. In: CVPR, pp. 12587–12596 (2019)

    Google Scholar 

  34. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  35. Zhang, Y., Liu, L., et al.: Quantifying facial age by posterior of age comparisons. In: BMVC (2017)

    Google Scholar 

  36. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: CVPR, pp. 4352–4360 (2017)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Science Foundation of China under Grants 62076142 and 62241603, in part by the National Key Research and Development Program of Ningxia under Grant 2023AAC05009, 2022BEG03158 and 2021BEB0406.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhendong Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 692 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, T., Dong, X., Li, Z., Liu, H. (2024). Co-regularized Facial Age Estimation with Graph-Causal Learning. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14432. Springer, Singapore. https://doi.org/10.1007/978-981-99-8543-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8543-2_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8542-5

  • Online ISBN: 978-981-99-8543-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics