Nothing Special   »   [go: up one dir, main page]

Skip to main content

Facial Age Estimation with Images in the Wild

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9516))

Included in the following conference series:

Abstract

In this paper, we investigate facial age estimation with images in the wild. We aim to utilize images from the Internet to alleviate the problem of imbalance in age distribution. First, we crawl 14,283 images with their context from Wikipedia and infer age labels from the context for each image. After face detection, facial landmark detection and alignment, we build a set of images for facial age estimation, containing 9,456 faces with significant variations. Then, we exploit cost-sensitive learning algorithms including biased penalties SVM and Random forests for age estimation, using images in the wild as the training set. We propose to use the Gaussian function to determine varied misclassification costs. Conducted on two public aging datasets, the within-database experiments illustrate the performance improvement with the introduction of images in the wild. Furthermore, our cross-database experiments validate the generalization capability of proposed cost-sensitive age estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://meta.wikimedia.org/wiki/List_of_Wikipedias.

  2. 2.

    http://commons.wikimedia.org/wiki/Commons:MIME_type_statistics.

References

  1. The fg-net aging database. http://www.fgnet.rsunit.com

  2. Mac Aodha, O., Brostow, G.J.: Revisiting example dependent cost-sensitive learning with decision trees. In: Proceedings of ICCV (2013)

    Google Scholar 

  3. Bach, F.R., Heckerman, D., Horvitz, E.: Considering cost asymmetry in learning classifiers. J. Mach. Learn. Res. 7, 1713–1741 (2006)

    MATH  MathSciNet  Google Scholar 

  4. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press, Boca Raton (1984)

    MATH  Google Scholar 

  5. Cai, D., He, X.: Orthogonal locality preserving indexing. In: Proceedings of SIGIR (2005)

    Google Scholar 

  6. Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)

    Article  Google Scholar 

  7. Chang, K.-Y., Chen, C.-S., Hung, Y.-P.: Ordinal hyperplanes ranker with cost sensitivities for age estimation. In: Proceedings of CVPR, pp. 585–592 (2011)

    Google Scholar 

  8. Chao, W.-L., Liu, J.-Z., Ding, J.-J.: Facial age estimation based on label-sensitive learning and age-oriented regression. Pattern Recogn. 46(3), 628–641 (2013)

    Article  Google Scholar 

  9. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE TPAMI 23(6), 681–685 (2001)

    Article  Google Scholar 

  10. Fu, Y., Guo, G., Huang, T.S.: Age synthesis and estimation via faces: a survey. IEEE TPAMI 32(11), 1955–1976 (2010)

    Article  Google Scholar 

  11. Geng, X., Zhou, Z.-H., Smith-Miles, K.: Automatic age estimation based on facial aging patterns. IEEE TPAMI 29(12), 2234–2240 (2007)

    Article  Google Scholar 

  12. Geng, X., Yin, C., Zhou, Z.-H.: Facial age estimation by learning from label distributions. IEEE TPAMI 35(10), 2401–2412 (2013)

    Article  Google Scholar 

  13. Guo, G., Mu, G., Fu, Y., Huang, T.S.: Human age estimation using bio-inspired features. In: Proceedings of CVPR (2009)

    Google Scholar 

  14. Kwon, Y.H., da Vitoria Lobo, N.: Age classification from facial images. In: Proceedings of CVPR (1994)

    Google Scholar 

  15. Ni, B., Song, Z., Yan, S.: Web image mining towards universal age estimator. In: Proceedings of ACM MM, pp. 85–94 (2009)

    Google Scholar 

  16. Nowozin, S.: Improved information gain estimates for decision tree induction. In: Proceedings of ICML (2012)

    Google Scholar 

  17. Ricanek, K., Tesafaye, T.: Morph: a longitudinal image database of normal adult age-progression. In: Proceedings of FG (2006)

    Google Scholar 

  18. Saragih, J.M., Lucey, S., Cohn, J.F.: Face alignment through subspace constrained mean-shifts. In: Proceedings of ICCV (2009)

    Google Scholar 

  19. Yan, S., Wang, H., Huang, T.S., Yang, Q., Tang, X.: Ranking with uncertain labels. In: Proceedings of ICME, pp. 96–99 (2007)

    Google Scholar 

  20. Yan, S., Wang, H., Tang, X., Huang, T.S.: Learning auto-structured regressor from uncertain nonnegative labels. In: Proceedings of ICCV (2007)

    Google Scholar 

  21. Zhang, Y., Yeung, D.-Y.: Multi-task warped gaussian process for personalized age estimation. In: Proceedings of CVPR (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61572060, 61170296 and 61190125) and the R&D Program (2013BAH35F01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zou, M., Niu, J., Chen, J., Liu, Y., Zhao, X. (2016). Facial Age Estimation with Images in the Wild. In: Tian, Q., Sebe, N., Qi, GJ., Huet, B., Hong, R., Liu, X. (eds) MultiMedia Modeling. MMM 2016. Lecture Notes in Computer Science(), vol 9516. Springer, Cham. https://doi.org/10.1007/978-3-319-27671-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27671-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27670-0

  • Online ISBN: 978-3-319-27671-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics