Nothing Special   »   [go: up one dir, main page]

Skip to main content

Quantum Attacks: A View of Data Complexity on Offline Simon’s Algorithm

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14527))

Included in the following conference series:

  • 453 Accesses

Abstract

Simon’s algorithm has shown a threat to block ciphers in the quantum setting, especially accelerating attacks with superposition queries. Sometimes it is difficult for attackers to make superposition queries, while an easier way is to use classical data then process them on quantum computers. At ASIACRYPT 2019, Bonnetain et al. proposed the offline Simon’s algorithm. But there is a gap between the classical queries and a quantum database in their work.

In this paper, we propose an algorithm involving polynomial qubits that can transform a classical database into a quantum superposition state without using QRAM. What’s more, we analyze the influence of two approaches called pre- and post-distinguisher methods for Simon’s algorithm attack. Then we run a quantum key recovery attack on Feistel structure in the Q1 model. For attacking r-round Feistel structure with n-bit block size and n/2-bit subkey, the time complexity of our attack is \(O(l\cdot 2^{n/2+2}+2^{(r-3)n/4})\) (where l is a constant), and the classical data complexity is always \(O(2^{n/2+1})\), which is much better than the classical attacks especially for \(r>5\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: FOCS 1994, pp. 124–134. IEEE Computer Society (1994). https://dblp.org/rec/conf/focs/Shor94.bib

  2. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller, G.L. (eds.) STOC 1996, pp. 212–219. ACM (1996). https://doi.acm.org/10.1145/237814.237866

  3. Simon, D.R.: On the power of quantum computation. In: FOCS 1994, pp. 116–123. IEEE Computer Society (1994). https://dblp.org/rec/conf/focs/Simon94.bib

  4. Leander, G., May, A.: Grover meets Simon – quantumly attacking the FX-construction. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 161–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_6

    Chapter  Google Scholar 

  5. Kaplan, M., Leurent, G., Leverrier, A., et al.: Quantum differential and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2016(1), 71–94 (2016). https://tosc.iacr.org/index.php/ToSC/article/view/536

  6. Dong, X., Wang, X.: Quantum key-recovery attack on Feistel structures. Sci. China Inf. Sci. 61(10), 102501 (2018)

    Google Scholar 

  7. Ito, G., Hosoyamada, A., Matsumoto, R., Sasaki, Yu., Iwata, T.: Quantum chosen-ciphertext attacks against Feistel ciphers. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 391–411. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_20

    Chapter  Google Scholar 

  8. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel cipher and the random permutation. In: Proceedings of 2010 International Symposium on Information Theory, pp. 2682–2685. IEEE, Austin, Texas, USA (2010)

    Google Scholar 

  9. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In: Proceedings of 2012 International Symposium on Information Theory and Its Applications, pp. 312–316. IEEE, Honolulu, HI, USA (2012)

    Google Scholar 

  10. Zhandry, M.: How to construct quantum random functions. In: 53rd Annual IEEE Symposium on Foundations of Computer Science, pp. 679–687. IEEE Computer Society, New Brunswick, NJ, USA (2012)

    Google Scholar 

  11. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: New attacks on Feistel structures with improved memory complexities. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 433–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_21

    Chapter  Google Scholar 

  12. Hosoyamada, A., Sasaki, Yu.: Quantum Demiric-Selçuk meet-in-the-middle attacks: applications to 6-round generic Feistel constructions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 386–403. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_21

    Chapter  Google Scholar 

  13. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

    Article  MathSciNet  Google Scholar 

  14. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Yu., Schrottenloher, A.: Quantum attacks without superposition queries: the offline Simon’s algorithm. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 552–583. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_20

    Chapter  Google Scholar 

  15. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_8

    Chapter  Google Scholar 

  16. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3

    Chapter  Google Scholar 

  17. Hosoyamada, A., Sasaki, Yu.: Cryptanalysis against symmetric-key schemes with online classical queries and offline quantum computations. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 198–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_11

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful comments and suggestions. This work was supported by National Natural Science Foundation of China (Grant No. 62202493, 61772545, 62072207) and Scientific Research Plan of National University of Defense Technology (No. ZK21-36) and Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515140090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tairong Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, B., Shi, T., Dong, X., Shen, X., Luo, Y., Sun, B. (2024). Quantum Attacks: A View of Data Complexity on Offline Simon’s Algorithm. In: Ge, C., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2023. Lecture Notes in Computer Science, vol 14527. Springer, Singapore. https://doi.org/10.1007/978-981-97-0945-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0945-8_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0944-1

  • Online ISBN: 978-981-97-0945-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics