Nothing Special   »   [go: up one dir, main page]

Skip to main content

Quantum Demiric-Selçuk Meet-in-the-Middle Attacks: Applications to 6-Round Generic Feistel Constructions

  • Conference paper
  • First Online:
Security and Cryptography for Networks (SCN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11035))

Included in the following conference series:

Abstract

This paper shows that quantum computers can significantly speed-up a type of meet-in-the-middle attacks initiated by Demiric and Selçuk (DS-MITM attacks), which is currently one of the most powerful cryptanalytic approaches in the classical setting against symmetric-key schemes. The quantum DS-MITM attacks are demonstrated against 6 rounds of the generic Feistel construction supporting an n-bit key and an n-bit block, which was attacked by Guo et al. in the classical setting with data, time, and memory complexities of \(O(2^{3n/4})\). The complexities of our quantum attacks depend on the adversary’s model. When the adversary has an access to quantum computers for offline computations but online queries are made in a classical manner, the attack complexities become \(\tilde{O}(2^{n/2})\), which significantly improves the classical attack. The attack is then extended to the case that the adversary can make superposition queries. The attack is based on 3-round distinguishers with Simon’s algorithm and then appends 3 rounds for key recovery. This can be solved by applying the combination of Simon’s and Grover’s algorithms recently proposed by Leander and May.

Due to space limitations, some details and proofs are left to the full paper [HS17].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Dong and Wang [DW17] independently pointed out the combination of the 3-round distinguisher [KM10] and key recovery attack [LM17].

  2. 2.

    Since any Q1 attack can be trivially converted to a Q2 attack by regarding quantum oracles as classical oracles, we can construct a Q2 attack with \(\max (T, D, M, N)\,=\,N^{1/2} \ll N^{3/4}\) from the best Q1 attack. However, such a Q2 attack requires time \(T=N\) in the case that only \(O(\log N)\) qubits are available.

References

  1. Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proceedings of the 45th Symposium on Foundations of Computer Science (FOCS 2004), Rome, Italy, 17–19 October 2004, pp. 22–31 (2004)

    Google Scholar 

  2. Banegas, G., Bernstein, D.J.: Low-communication parallel quantum multi-target preimage search. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 325–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_16

    Chapter  Google Scholar 

  3. Beals, R., et al.: Efficient distributed quantum computing. Proc. R. Soc. A 469(2153), 20120686 (2013)

    Article  MathSciNet  Google Scholar 

  4. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschr. Phys. 46(4–5), 493–505 (1998)

    Article  Google Scholar 

  5. Bernstein, D.J.: Cost analysis of hash collisions: Will quantum computers make SHARCS obsolete? In: Special-Purpose Hardware for Attacking Cryptographic Systems, SHARCS 2009, p. 105 (2009)

    Google Scholar 

  6. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002)

    Article  MathSciNet  Google Scholar 

  7. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free functions. SIGACT News 28(2), 14–19 (1997)

    Article  Google Scholar 

  8. Bonnetain, X.: Quantum key-recovery on full AEZ. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 394–406. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_20

    Chapter  Google Scholar 

  9. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: New attacks on Feistel structures with improved memory complexities. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 433–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_21

    Chapter  Google Scholar 

  10. Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-round AES in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_23

    Chapter  MATH  Google Scholar 

  11. Derbez, P., Perrin, L.: Meet-in-the-middle attacks and structural analysis of round-reduced PRINCE. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 190–216. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5_10

    Chapter  Google Scholar 

  12. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4_7

    Chapter  Google Scholar 

  13. Dong, X., Wang, X.: Quantum key-recovery attack on Feistel structures. IACR Cryptology ePrint Archive, 2017:1199 (2017)

    Google Scholar 

  14. Guo, J., Jean, J., Nikolić, I., Sasaki, Y.: Meet-in-the-middle attacks on generic Feistel constructions. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 458–477. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_24

    Chapter  Google Scholar 

  15. Guo, J., Jean, J., Nikolic, I., Sasaki, Y.: Meet-in-the-middle attacks on classes of contracting and expanding Feistel constructions. IACR Trans. Symmetric Cryptol. 2016(2), 307–337 (2016)

    Google Scholar 

  16. Grover, L.K., Rudolph, T.: How significant are the known collision and element distinctness quantum algorithms? Quantum Inf. Comput. 4(3), 201–206 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp. 212–219 (1996)

    Google Scholar 

  18. Hosoyamada, A., Sasaki, Y.: Quantum Demiric-Selçuk meet-in-the-middle attacks: applications to 6-round generic Feistel constructions. IACR Cryptology ePrint Archive, 2017:1229 (2017)

    Google Scholar 

  19. Hosoyamada, A., Sasaki, Y.: Cryptanalysis against symmetric-key schemes with online classical queries and offline quantum computations. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 198–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_11

    Chapter  Google Scholar 

  20. Isobe, T., Shibutani, K.: All subkeys recovery attack on block ciphers: extending meet-in-the-middle approach. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 202–221. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35999-6_14

    Chapter  MATH  Google Scholar 

  21. Isobe, T., Shibutani, K.: Generic key recovery attack on Feistel scheme. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 464–485. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_24

    Chapter  Google Scholar 

  22. Kaplan, M.: Quantum attacks against iterated block ciphers. CoRR abs/1410.1434 (2014)

    Google Scholar 

  23. Kaplan, M., Leurent, G., Leverrier, A.,  Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_8

    Chapter  Google Scholar 

  24. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2016(1), 71–94 (2016)

    MATH  Google Scholar 

  25. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel cipher and the random permutation. In: Proceedings of the IEEE International Symposium on Information Theory, ISIT 2010, Austin, Texas, USA, 13–18 June 2010, pp. 2682–2685 (2010)

    Google Scholar 

  26. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In: Proceedings of the International Symposium on Information Theory and its Applications, ISITA 2012, Honolulu, HI, USA, 28–31 October 2012, pp. 312–316 (2012)

    Google Scholar 

  27. Knudsen, L.R.: The security of Feistel ciphers with six rounds or less. J. Cryptol. 15(3), 207–222 (2002)

    Article  MathSciNet  Google Scholar 

  28. Leander, G., May, A.: Grover meets Simon – quantumly attacking the FX-construction. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 161–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_6

    Chapter  Google Scholar 

  29. McKay, K.A., Bassham, L., Turan, M.S., Mouha, N.: NISTIR 8114 report on lightweight cryptography. Technical report, U.S. Department of Commerce, National Institute of Standards and Technology (2017)

    Google Scholar 

  30. Mennink, B., Szepieniec, A.: XOR of PRPs in a quantum world. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 367–383. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_21

    Chapter  Google Scholar 

  31. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)

    Article  MathSciNet  Google Scholar 

  32. Tani, S.: Claw finding algorithms using quantum walk. Theor. Comput. Sci. 410(50), 5285–5297 (2009)

    Article  MathSciNet  Google Scholar 

  33. Zhang, S.: Promised and distributed quantum search. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 430–439. Springer, Heidelberg (2005). https://doi.org/10.1007/11533719_44

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinori Hosoyamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hosoyamada, A., Sasaki, Y. (2018). Quantum Demiric-Selçuk Meet-in-the-Middle Attacks: Applications to 6-Round Generic Feistel Constructions. In: Catalano, D., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2018. Lecture Notes in Computer Science(), vol 11035. Springer, Cham. https://doi.org/10.1007/978-3-319-98113-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98113-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98112-3

  • Online ISBN: 978-3-319-98113-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics