Abstract
This paper shows that quantum computers can significantly speed-up a type of meet-in-the-middle attacks initiated by Demiric and Selçuk (DS-MITM attacks), which is currently one of the most powerful cryptanalytic approaches in the classical setting against symmetric-key schemes. The quantum DS-MITM attacks are demonstrated against 6 rounds of the generic Feistel construction supporting an n-bit key and an n-bit block, which was attacked by Guo et al. in the classical setting with data, time, and memory complexities of \(O(2^{3n/4})\). The complexities of our quantum attacks depend on the adversary’s model. When the adversary has an access to quantum computers for offline computations but online queries are made in a classical manner, the attack complexities become \(\tilde{O}(2^{n/2})\), which significantly improves the classical attack. The attack is then extended to the case that the adversary can make superposition queries. The attack is based on 3-round distinguishers with Simon’s algorithm and then appends 3 rounds for key recovery. This can be solved by applying the combination of Simon’s and Grover’s algorithms recently proposed by Leander and May.
Due to space limitations, some details and proofs are left to the full paper [HS17].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Since any Q1 attack can be trivially converted to a Q2 attack by regarding quantum oracles as classical oracles, we can construct a Q2 attack with \(\max (T, D, M, N)\,=\,N^{1/2} \ll N^{3/4}\) from the best Q1 attack. However, such a Q2 attack requires time \(T=N\) in the case that only \(O(\log N)\) qubits are available.
References
Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proceedings of the 45th Symposium on Foundations of Computer Science (FOCS 2004), Rome, Italy, 17–19 October 2004, pp. 22–31 (2004)
Banegas, G., Bernstein, D.J.: Low-communication parallel quantum multi-target preimage search. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 325–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_16
Beals, R., et al.: Efficient distributed quantum computing. Proc. R. Soc. A 469(2153), 20120686 (2013)
Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschr. Phys. 46(4–5), 493–505 (1998)
Bernstein, D.J.: Cost analysis of hash collisions: Will quantum computers make SHARCS obsolete? In: Special-Purpose Hardware for Attacking Cryptographic Systems, SHARCS 2009, p. 105 (2009)
Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002)
Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free functions. SIGACT News 28(2), 14–19 (1997)
Bonnetain, X.: Quantum key-recovery on full AEZ. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 394–406. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_20
Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: New attacks on Feistel structures with improved memory complexities. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 433–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_21
Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-round AES in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_23
Derbez, P., Perrin, L.: Meet-in-the-middle attacks and structural analysis of round-reduced PRINCE. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 190–216. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5_10
Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4_7
Dong, X., Wang, X.: Quantum key-recovery attack on Feistel structures. IACR Cryptology ePrint Archive, 2017:1199 (2017)
Guo, J., Jean, J., Nikolić, I., Sasaki, Y.: Meet-in-the-middle attacks on generic Feistel constructions. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 458–477. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_24
Guo, J., Jean, J., Nikolic, I., Sasaki, Y.: Meet-in-the-middle attacks on classes of contracting and expanding Feistel constructions. IACR Trans. Symmetric Cryptol. 2016(2), 307–337 (2016)
Grover, L.K., Rudolph, T.: How significant are the known collision and element distinctness quantum algorithms? Quantum Inf. Comput. 4(3), 201–206 (2004)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp. 212–219 (1996)
Hosoyamada, A., Sasaki, Y.: Quantum Demiric-Selçuk meet-in-the-middle attacks: applications to 6-round generic Feistel constructions. IACR Cryptology ePrint Archive, 2017:1229 (2017)
Hosoyamada, A., Sasaki, Y.: Cryptanalysis against symmetric-key schemes with online classical queries and offline quantum computations. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 198–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_11
Isobe, T., Shibutani, K.: All subkeys recovery attack on block ciphers: extending meet-in-the-middle approach. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 202–221. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35999-6_14
Isobe, T., Shibutani, K.: Generic key recovery attack on Feistel scheme. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 464–485. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_24
Kaplan, M.: Quantum attacks against iterated block ciphers. CoRR abs/1410.1434 (2014)
Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_8
Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2016(1), 71–94 (2016)
Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel cipher and the random permutation. In: Proceedings of the IEEE International Symposium on Information Theory, ISIT 2010, Austin, Texas, USA, 13–18 June 2010, pp. 2682–2685 (2010)
Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In: Proceedings of the International Symposium on Information Theory and its Applications, ISITA 2012, Honolulu, HI, USA, 28–31 October 2012, pp. 312–316 (2012)
Knudsen, L.R.: The security of Feistel ciphers with six rounds or less. J. Cryptol. 15(3), 207–222 (2002)
Leander, G., May, A.: Grover meets Simon – quantumly attacking the FX-construction. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 161–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_6
McKay, K.A., Bassham, L., Turan, M.S., Mouha, N.: NISTIR 8114 report on lightweight cryptography. Technical report, U.S. Department of Commerce, National Institute of Standards and Technology (2017)
Mennink, B., Szepieniec, A.: XOR of PRPs in a quantum world. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 367–383. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_21
Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)
Tani, S.: Claw finding algorithms using quantum walk. Theor. Comput. Sci. 410(50), 5285–5297 (2009)
Zhang, S.: Promised and distributed quantum search. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 430–439. Springer, Heidelberg (2005). https://doi.org/10.1007/11533719_44
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Hosoyamada, A., Sasaki, Y. (2018). Quantum Demiric-Selçuk Meet-in-the-Middle Attacks: Applications to 6-Round Generic Feistel Constructions. In: Catalano, D., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2018. Lecture Notes in Computer Science(), vol 11035. Springer, Cham. https://doi.org/10.1007/978-3-319-98113-0_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-98113-0_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98112-3
Online ISBN: 978-3-319-98113-0
eBook Packages: Computer ScienceComputer Science (R0)