Nothing Special   »   [go: up one dir, main page]

Skip to main content

Weakly Aggregative Modal Logic: Characterization and Interpolation

  • Conference paper
  • First Online:
Logic, Rationality, and Interaction (LORI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11813))

Included in the following conference series:

Abstract

Weakly Aggregative Modal Logic (\(\textsf {WAML}\)) is a collection of disguised polyadic modal logics with n-ary modalities whose arguments are all the same. \(\textsf {WAML}\) has some interesting applications on epistemic logic and logic of games, so we study some basic model theoretical aspects of \(\textsf {WAML}\) in this paper. Specifically, we give a van Benthem-Rosen characterization theorem of \(\textsf {WAML}\) based on an intuitive notion of bisimulation and show that each basic \(\textsf {WAML}\) system \(\mathbb {K}_n\) lacks Craig Interpolation.

The main work of the first author was completed during his Ph.D. at Peking University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is not to be confused with the non-contingency operator, which is also denoted as \(\nabla \) in non-contingency or knowing whether logics [14].

  2. 2.

    One can find a model theoretical survey on \(\textsf {PML}\) in [22].

  3. 3.

    Name mentioned by Yde Venema via personal communications.

  4. 4.

    Other connections between WAML and graph coloring problems can be found in [24] where the four-color problem is coded by the validity of some formulas in the WAML language.

  5. 5.

    This rule can be simplified by the axiom \(\Box \top \) since we have \(\mathtt {RM}\) here.

  6. 6.

    We have another proof for the Characterization theorem over arbitrary n-models, using tailored notions of saturation and ultrafilter extension for \(\textsf {WAML}^n\), due to the space limit we only present the proof which also works for finite models.

References

  1. Allen, M.: Complexity results for logics of local reasoning and inconsistent belief. In: Proceedings of the 10th Conference on Theoretical Aspects of Rationality and Knowledge, pp. 92–108. National University of Singapore (2005)

    Google Scholar 

  2. Andréka, H., Németi, I., van Benthem, J.: Modal languages and bounded fragments of predicate logic. J. Philos. Logic 27(3), 217–274 (1998)

    Article  MathSciNet  Google Scholar 

  3. Andréka, H., Van Benthem, J., Németi, I.: Back and forth between modal logic and classical logic. Logic J. IGPL 3(5), 685–720 (1995)

    Article  MathSciNet  Google Scholar 

  4. Apostoli, P.: On the completeness of first degree weakly aggregative modal logics. J. Philos. Logic 26(2), 169–180 (1997)

    Article  MathSciNet  Google Scholar 

  5. Apostoli, P., Brown, B.: A solution to the completeness problem for weakly aggregative modal logic. J. Symbolic Logic 60(3), 832–842 (1995)

    Article  MathSciNet  Google Scholar 

  6. Arló Costa, H.: Non-adjunctive inference and classical modalities. J. Philos. Logic 34(5), 581–605 (2005)

    Article  MathSciNet  Google Scholar 

  7. Baader, F., Horrocks, I., Sattler, U.: Description logics. Found. Artif. Intell. 3, 135–179 (2008)

    Article  Google Scholar 

  8. Beall, J., et al.: On the ternary relation and conditionality. J. Philos. Logic 41(3), 595–612 (2012)

    Article  MathSciNet  Google Scholar 

  9. van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change. Inf. Comput. 204(11), 1620–1662 (2006)

    Article  MathSciNet  Google Scholar 

  10. Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic, vol. 53. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  11. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)

    Book  Google Scholar 

  12. De Caro, F.: Graded modalities, ii (canonical models). Studia Logica 47(1), 1–10 (1988). https://doi.org/10.1007/BF00374047

    Article  MathSciNet  Google Scholar 

  13. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  14. Fan, J., Wang, Y., van Ditmarsch, H.: Contingency and knowing whether. Rev. Symbol. Logic 8, 75–107 (2015)

    Article  MathSciNet  Google Scholar 

  15. Fattorosi-Barnaba, M., De Caro, F.: Graded modalities. I. Studia Logica 44(2), 197–221 (1985). https://doi.org/10.1007/BF00379767

    Article  MathSciNet  Google Scholar 

  16. Fervari, R., Herzig, A., Li, Y., Wang, Y.: Strategically knowing how. In: Proceedings of IJCAI 2017, pp. 1031–1038 (2017)

    Google Scholar 

  17. Fine, K., et al.: In so many possible worlds. Notre Dame J. Formal Logic 13(4), 516–520 (1972)

    Article  MathSciNet  Google Scholar 

  18. Gu, T., Wang, Y.: “Knowing value” logic as a normal modal logic. In: Proceedings of AiML, vol. 11, pp. 362–381 (2016)

    Google Scholar 

  19. Hansen, H., Kupke, C., Pacuit, E.: Neighbourhood structures: bisimilarity and basic model theory. Logical Meth. Comput. Sci. 5(2) (2009). https://doi.org/10.2168/LMCS-5(2:2)2009

  20. Jennings, R.E., Schotch, P.K.: Some remarks on (weakly) weak modal logics. Notre Dame J. Formal Logic 22(4), 309–314 (1981)

    Article  MathSciNet  Google Scholar 

  21. Kamp, H.: Tense logic and the theory of linear order. Ph.D. thesis, UCLA (1968)

    Google Scholar 

  22. Liu, J.: Model theoretical aspects of polyadic modal logic: an exposition. Stud. Logic 12(3), 79–101 (2019)

    Google Scholar 

  23. Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in expressive description logics. In: Twenty-Second International Joint Conference on Artificial Intelligence (2011)

    Google Scholar 

  24. Nicholson, T., Allen, M.: Aggregative combinatorics: an introduction. In: Student Session of 2nd North American Summer School in Language, Logic, and Information, pp. 15–25 (2003)

    Google Scholar 

  25. Nicholson, T., Allen, M.: Aggregative combinatorics: an introduction. In: Proceedings of the Student Session, 2nd North American Summer School in Logic, Language, and Information (NASSLLI-03), pp. 15–25 (2003)

    Google Scholar 

  26. Nicholson, T., Jennings, R.E., Sarenac, D.: Revisiting completeness for the \({K}_{n}\) modal logics: a new proof. Logic J. IGPL 8(1), 101–105 (2000)

    Article  MathSciNet  Google Scholar 

  27. Otto, M.: Elementary proof of the van Benthem-Rosen characterisation theorem. Technical report 2342 (2004)

    Google Scholar 

  28. de Rijke, M.: Extending modal logic. Ph.D. thesis, ILLC, University of Amsterdam (1993)

    Google Scholar 

  29. Routley, R., Meyer, R.K.: The semantics of entailment – II. J. Philos. Logic 1(1), 53–73 (1972)

    Google Scholar 

  30. Routley, R., Meyer, R.K.: The semantics of entailment – III. J. Philos. Logic 1(2), 192–208 (1972)

    Article  MathSciNet  Google Scholar 

  31. Santocanale, L., Venema, Y., et al.: Uniform interpolation for monotone modal logic. Adv. Modal Logic 8, 350–370 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Schotch, P., Jennings, R.: Modal logic and the theory of modal aggregation. Philosophia 9(2), 265–278 (1980)

    Article  Google Scholar 

  33. Segerberg, K.: An Essay in Classical Modal Logic. Filosofiska Föreningen Och Filosofiska Institutionen Vid Uppsala Universitet, Uppsala (1971)

    MATH  Google Scholar 

  34. Van Benthem, J., Bezhanishvili, N., Enqvist, S., Yu, J.: Instantial neighbourhood logic. Rev. Symbolic Logic 10(1), 116–144 (2017)

    Article  MathSciNet  Google Scholar 

  35. Wang, Y.: A logic of goal-directed knowing how. Synthese 195(10), 4419–4439 (2018)

    Article  MathSciNet  Google Scholar 

  36. Wang, Y., Fan, J.: Conditionally knowing what. In: Proceedings of AiML, vol. 10, pp. 569–587 (2014). www.aiml.net/volumes/volume10/Wang-Fan.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Wang, Y., Ding, Y. (2019). Weakly Aggregative Modal Logic: Characterization and Interpolation. In: Blackburn, P., Lorini, E., Guo, M. (eds) Logic, Rationality, and Interaction. LORI 2019. Lecture Notes in Computer Science(), vol 11813. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60292-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60292-8_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60291-1

  • Online ISBN: 978-3-662-60292-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics