Nothing Special   »   [go: up one dir, main page]

Skip to main content

Cluster Vertex Deletion: A Parameterization between Vertex Cover and Clique-Width

  • Conference paper
Mathematical Foundations of Computer Science 2012 (MFCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7464))

Abstract

The cluster vertex deletion number of a graph is the minimum number of its vertices whose deletion results in a disjoint union of complete graphs. This generalizes the vertex cover number, provides an upper bound to the clique-width and is related to the previously studied notion of the twin cover of the graph under consideration. We study the fixed parameter tractability of basic graph theoretic problems related to coloring and Hamiltonicity parameterized by cluster vertex deletion number. Our results show that most of these problems remain fixed parameter tractable as well, and thus we push the borderline between tractability and intractability towards the clique-width parameter.

Supported by Czech Research grants CE-ITI GAČR P202/12/6061 and GAUK 64110.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abrahamson, K.R., Ellis, J.A., Fellows, M.R., Mata, M.E.: On the Complexity of Fixed Parameter Problems (Extended Abstract). In: FOCS 1989, pp. 210–215 (1989)

    Google Scholar 

  2. Abu-Khzam, F.N.: A kernelization algorithm for d-Hitting Set. J. Comput. Syst. Sci. 76(7), 524–531 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Applied Mathematics 23(1), 11–24 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of Finding Embeddings in a k-Tree. SIAM. J. on Algebraic and Discrete Methods 8, 277–284 (1978)

    Article  MathSciNet  Google Scholar 

  5. Berend, D., Tassa, T.: Improved bounds on bell numbers and on moments of sums of random variables. Probability and Mathematical Statistics 30, 185–205 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Bodlaender, H.L.: A Linear-Time Algorithm for Finding Tree-Decompositions of Small Treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58(4), 171–176 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, J., Kanj, I.A., Xia, G.: Improved Parameterized Upper Bounds for Vertex Cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 238–249. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput. 34, 825–847 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Disc. Appl. Math. 101, 77–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science. Springer (1999)

    Google Scholar 

  13. Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F., Saurabh, S., Szeider, S., Thomassen, C.: On the complexity of some colorful problems parameterized by treewidth. Information and Computation 209, 143–153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph Layout problems Parameterized by Vertex Cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is NP-complete. SIAM J. Discr. Math. 23(2), 909–939 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fiala, J., Golovach, P.A., Kratochvíl, J.: Parameterized Complexity of Coloring Problems: Treewidth versus Vertex Cover (Extended Abstract). In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS, vol. 5532, pp. 221–230. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Fomin, F.V., Gaspers, S., Kratsch, D., Liedloff, M., Saurabh, S.: Iterative compression and exact algorithms. Theor. Comput. Sci. 411(7-9), 1045–1053 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Clique-width: On the Price of Generality. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2009). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, pp. 825–834 (2009)

    Google Scholar 

  19. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Intractability of Clique-Width Parameterizations. SIAM J. Comput. 39(5), 1941–1956 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ganian, R.: Twin-Cover: Beyond Vertex Cover in Parameterized Algorithmics. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 259–271. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Hopcroft, J.E., Karp, R.M.: An n 5/2 Algorithm for Maximum Matchings in Bipartite Graphs. SIAM J. Comput. 2, 225–231

    Google Scholar 

  22. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-Parameter Algorithms for Cluster Vertex Deletion. Theory Comput. Syst. 47(1), 196–217 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations: Proc. of a Symp. on the Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Plenum Press, New York (1972)

    Google Scholar 

  24. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. Journal of Computer and System Sciences 20(2), 219–230 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doucha, M., Kratochvíl, J. (2012). Cluster Vertex Deletion: A Parameterization between Vertex Cover and Clique-Width. In: Rovan, B., Sassone, V., Widmayer, P. (eds) Mathematical Foundations of Computer Science 2012. MFCS 2012. Lecture Notes in Computer Science, vol 7464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32589-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32589-2_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32588-5

  • Online ISBN: 978-3-642-32589-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics