Abstract
The cluster vertex deletion number of a graph is the minimum number of its vertices whose deletion results in a disjoint union of complete graphs. This generalizes the vertex cover number, provides an upper bound to the clique-width and is related to the previously studied notion of the twin cover of the graph under consideration. We study the fixed parameter tractability of basic graph theoretic problems related to coloring and Hamiltonicity parameterized by cluster vertex deletion number. Our results show that most of these problems remain fixed parameter tractable as well, and thus we push the borderline between tractability and intractability towards the clique-width parameter.
Supported by Czech Research grants CE-ITI GAČR P202/12/6061 and GAUK 64110.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abrahamson, K.R., Ellis, J.A., Fellows, M.R., Mata, M.E.: On the Complexity of Fixed Parameter Problems (Extended Abstract). In: FOCS 1989, pp. 210–215 (1989)
Abu-Khzam, F.N.: A kernelization algorithm for d-Hitting Set. J. Comput. Syst. Sci. 76(7), 524–531 (2010)
Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Applied Mathematics 23(1), 11–24 (1989)
Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of Finding Embeddings in a k-Tree. SIAM. J. on Algebraic and Discrete Methods 8, 277–284 (1978)
Berend, D., Tassa, T.: Improved bounds on bell numbers and on moments of sums of random variables. Probability and Mathematical Statistics 30, 185–205 (2010)
Bodlaender, H.L.: A Linear-Time Algorithm for Finding Tree-Decompositions of Small Treewidth. SIAM J. Comput. 25, 1305–1317 (1996)
Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58(4), 171–176 (1996)
Chen, J., Kanj, I.A., Xia, G.: Improved Parameterized Upper Bounds for Vertex Cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 238–249. Springer, Heidelberg (2006)
Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput. 34, 825–847 (2005)
Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990)
Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Disc. Appl. Math. 101, 77–114 (2000)
Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science. Springer (1999)
Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F., Saurabh, S., Szeider, S., Thomassen, C.: On the complexity of some colorful problems parameterized by treewidth. Information and Computation 209, 143–153 (2011)
Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph Layout problems Parameterized by Vertex Cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidelberg (2008)
Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is NP-complete. SIAM J. Discr. Math. 23(2), 909–939 (2009)
Fiala, J., Golovach, P.A., Kratochvíl, J.: Parameterized Complexity of Coloring Problems: Treewidth versus Vertex Cover (Extended Abstract). In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS, vol. 5532, pp. 221–230. Springer, Heidelberg (2009)
Fomin, F.V., Gaspers, S., Kratsch, D., Liedloff, M., Saurabh, S.: Iterative compression and exact algorithms. Theor. Comput. Sci. 411(7-9), 1045–1053 (2010)
Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Clique-width: On the Price of Generality. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2009). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, pp. 825–834 (2009)
Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Intractability of Clique-Width Parameterizations. SIAM J. Comput. 39(5), 1941–1956 (2010)
Ganian, R.: Twin-Cover: Beyond Vertex Cover in Parameterized Algorithmics. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 259–271. Springer, Heidelberg (2012)
Hopcroft, J.E., Karp, R.M.: An n 5/2 Algorithm for Maximum Matchings in Bipartite Graphs. SIAM J. Comput. 2, 225–231
Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-Parameter Algorithms for Cluster Vertex Deletion. Theory Comput. Syst. 47(1), 196–217 (2010)
Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations: Proc. of a Symp. on the Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Plenum Press, New York (1972)
Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. Journal of Computer and System Sciences 20(2), 219–230 (1980)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Doucha, M., Kratochvíl, J. (2012). Cluster Vertex Deletion: A Parameterization between Vertex Cover and Clique-Width. In: Rovan, B., Sassone, V., Widmayer, P. (eds) Mathematical Foundations of Computer Science 2012. MFCS 2012. Lecture Notes in Computer Science, vol 7464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32589-2_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-32589-2_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32588-5
Online ISBN: 978-3-642-32589-2
eBook Packages: Computer ScienceComputer Science (R0)