Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dense Arithmetic over Finite Fields with the CUMODP Library

  • Conference paper
Mathematical Software – ICMS 2014 (ICMS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8592))

Included in the following conference series:

Abstract

CUMODP is a CUDA library for exact computations with dense polynomials over finite fields. A variety of operations like multiplication, division, computation of subresultants, multi-point evaluation, interpolation and many others are provided. These routines are primarily designed to offer GPU support to polynomial system solvers and a bivariate system solver is part of the library. Algorithms combine FFT-based and plain arithmetic, while the implementation strategy emphasizes reducing parallelism overheads and optimizing hardware usage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3-4), 235–265 (1997); Computational algebra and number theory (London, 1993)

    Google Scholar 

  2. Brent, R.P., Gaudry, P., Thomé, E., Zimmermann, P.: Faster multiplication in GF(2)[x]. In: van der Poorten, A.J., Stein, A. (eds.) ANTS-VIII 2008. LNCS, vol. 5011, pp. 153–166. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3  93(2), 216–231 (2005)

    Google Scholar 

  4. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, New York (2003)

    MATH  Google Scholar 

  5. Gibbons, P.B.: A more practical PRAM model. In: Proc. of SPAA, pp. 158–168 (1989)

    Google Scholar 

  6. Gibbons, P.B., Matias, Y., Ramachandran, V.: The Queue-Read Queue-Write PRAM model: Accounting for contention in parallel algorithms. SIAM J. on Comput. 28(2), 733–769 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. on Applied Mathematics 17(2), 416–429 (1969)

    Article  MATH  Google Scholar 

  8. Haque, S.A., Moreno Maza, M.: Plain polynomial arithmetic on GPU. J. of Physics: Conf. Series 385, 12014 (2012)

    Google Scholar 

  9. Haque, S.A., Moreno Maza, M., Xie, N.: A Many-core Machine Model for Designing Algorithms with Minimum Parallelism Overheads. Computing Research Repository, abs/1402.0264 (2014), http://arxiv.org/abs/1402.0264

  10. Hart, W.B.: Fast library for number theory: An introduction. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 88–91. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Li, X., Moreno Maza, M., Rasheed, R., Schost, É.: The modpn library: Bringing fast polynomial arithmetic into maple. J. Symb. Comput. 46(7), 841–858 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ma, L., Agrawal, K., Chamberlain, R.D.: A memory access model for highly-threaded many-core architectures. In: Proc. of ICPADS, pp. 339–347 (2012)

    Google Scholar 

  13. Moreno Maza, M., Pan, W.: Fast polynomial arithmetic on a gpu. J. of Physics: Conference Series 256 (2010)

    Google Scholar 

  14. Moreno Maza, M., Pan, W.: Solving bivariate polynomial systems on a gpu. J. of Physics: Conference Series 341 (2011)

    Google Scholar 

  15. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with CUDA. Queue 6(2), 40–53 (2008)

    Article  Google Scholar 

  16. Püschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B., Xiong, J., Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.: SPIRAL: Code generation for DSP transforms. Proceedings of the IEEE, Special issue on “Program Generation, Optimization, and Adaptation” 93(2), 232–275 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haque, S.A., Li, X., Mansouri, F., Maza, M.M., Pan, W., Xie, N. (2014). Dense Arithmetic over Finite Fields with the CUMODP Library. In: Hong, H., Yap, C. (eds) Mathematical Software – ICMS 2014. ICMS 2014. Lecture Notes in Computer Science, vol 8592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44199-2_108

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44199-2_108

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44198-5

  • Online ISBN: 978-3-662-44199-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics